Check Your Understanding

- 1. Simplify: $\sqrt{45}$
- 2. Plot the points and label them on the coordinate plane: P(4,0), L(0,-3), O(-4,0), T(0,3)

MULTIPLE-CHOICE

- 3. Given: semi-major axis length of 6
 - a) *a* = 3
 - b) a = 6
 - c) a = 12
 - d) *a* = 36
- 4. Given: ellipse and b = 3
 - a) semi-minor axis = 6, minor axis = 3
 - b) semi-minor axis = 1.5, minor axis = 3
 - c) semi-minor axis = 3, minor axis = 6
 - d) semi-conjugate axis = 3, conjugate axis = 6
- 5. Given: ellipse, $F(\pm 4,0)$, major axis length of 9
 - a) Horizontal, c = 4, and a = 9
 - b) Horizontal, c = 4, and a = 4.5
 - c) Vertical, c = 4, and a = 4.5
 - d) Horizontal, b = 4, and a = 4.5
- 6. Given: transverse axis length of 20
 - a) a = 10
 - b) *b* = 10
 - c) a = 20
 - d) a = 40
- 7. Given: hyperbola and b = 4
 - a) semi-conjugate axis = 8, conjugate axis = 4
 - b) semi-conjugate axis = 4, conjugate axis = 16
 - c) semi-conjugate axis = 2, conjugate axis = 4
 - d) semi-conjugate axis = 4, conjugate axis = 8

- 8. Given: hyperbola and $V(0, \pm 7)$
 - a) E-W, c = 7
 - b) E-W, semi-transverse length of 7
 - c) S-N, c = 7
 - d) S-N, semi-transverse length of 7

Fill in the blank.

- 9. Given an ellipse or a hyperbola, the distance from the center to the vertices is defined as
- 10. Given an ellipse or a hyperbola, the distance from the center to the co-vertices is defined as
- 11. Given an ellipse or a hyperbola, the distance from the center to the foci is defined as
- 12. *Parabola*: If the directrix is x = 3 and the focus is at (-3,0), then p =_____. Write the equation in standard form.

13. *Ellipse*: Given $V(0, \pm 13)$ and the distance from F to V is 1, write the equation in standard form.