\qquad

Non-Calculator

1) Using the graph of $f(x)$ on the right:
a) estimate the values) of the relative max and min.
```
relative max: 4
relative min: -2
```

b) write the end behavior using limit notation.

$$
\lim _{x \rightarrow-\infty} f(x)=\infty \text { and } \lim _{x \rightarrow \infty} f(x)=\infty
$$

2) Find the domain and range of the following:
a) $f(x)=\sqrt{x-1}+3$
b) $k(x)=\sqrt{-2 x+1}$

Domain: $x-1 \geqslant 0$

$$
x \geq 1
$$

Range : $\sqrt{x-1}$ is ≥ 0 so, $\sqrt{x-1}+3$ is ≥ 3
Domain: $[1, \infty)$
Targe: $[3, \infty)$

Domain: $-2 x+1 \geq 0$

		x
Range: $\sqrt{-2 x+1}$	≥-1	
	is	≥ 0

\& Range:[0, \infty)\end{aligned}\)
3) Find $(f \circ g)(x)$ and $(g \circ f)(x)$ if $f(x)=x^{2}-7$ and $g(x)=\sqrt{x+3}$. Then, write the domain of each.

$$
\begin{aligned}
(f \circ g)(x) & =f(g(x)) \\
& =(\sqrt{x+3})^{2}-7 \\
& =x+3-7 \\
(f \circ g)(x) & =x-4
\end{aligned}
$$

$$
(g \circ f)(x)=\sqrt{x^{2}-7+3}
$$

$$
(g \circ f)(x)=\sqrt{x^{2}-4}
$$

Domain: $(-\infty,-2] \cup[2, \infty)$

Domain: $[-3, \infty)$
4) Find $f(g(2))$ and $g(f(-1))$ if $f(x)=2 x-5$ and $g(x)=x^{2}+3 x-1$.

$$
\begin{array}{l|l}
f(g(2))=f(9)=2(9)-5=13 \\
\underset{\sim}{\downarrow} \\
g(2)=(2)^{2}+3(2)-1=4+6-1=9 & g(f(-1))=g(-7)=(-7)^{2}+3(-7)-1=49-21-1 \\
=27
\end{array}
$$

5) Find the inverse of:
a) $f(x)=4 x-8$
b) $h(x)=(x-3)^{2}+9$

$$
\left.\begin{array}{l}
y=4 x-8 \\
x=4 y-8 \\
x+8=4 y
\end{array}\right\} \begin{aligned}
& \frac{x+8}{4}=y \\
& f^{-1}(x)=\frac{x+8}{4}=\frac{1}{4} x+2 \begin{aligned}
y & =(x-3)^{2}+9 \\
x & =(y-3)^{2}+9
\end{aligned} \\
& \sqrt{x-9}=(y-3)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \pm \pm \sqrt{x-9}=y-3 \\
& \pm \sqrt{x-9}+3=y \\
& \text { Note the equation of above is NOT a } \\
& \text { function, so I don't write } h^{-1}(x) .
\end{aligned}
$$

6) Using your knowledge of parent functions and transformations, write the function that produces the graph on the right.

$$
\begin{aligned}
& \text { exponential function (H. A. @ } y=1 \text {) } \\
& \quad y=-e^{x}+1
\end{aligned}
$$

7) Using your knowledge of parent functions and transformations, write the function that produces the graph on the right.

Squaring/quadratic function

$$
y=x^{2}+3
$$

8) Sketch a graph of 3 functions that are NOT continuous over the Real Numbers.

9) Sketch a graph of 3 functions that are decreasing on the interval $(-\infty, 0)$.

10) Sketch the following:

a) graphs of 3 functions that are bounded below
b) graphs of 2 bounded functions
c) a graph of a function that's NOT bounded
a)

b)

c)

11) Describe the transformation of $q(x)=(x-3)^{2}-5$ from its parent function.

Translate (shift) down 5 units right 3 down 5 and and
translate (shift) right 3 units

Then, sketch and label the graph of the function.

Calculator

12) Find the zeroes of $f(x)=x^{2}-5 x+3$. What is the domain and range of this function?

$$
\begin{aligned}
& x=0.697, x=4.303 \\
& \text { Domain: }(-\infty, \infty) \\
& \text { Range : }[-3.25, \infty)
\end{aligned}
$$

13) Using limit notation, write the end behavior of $f(x)=3 x^{3}-26 x^{2}+61 x-30$.

$$
\lim _{x \rightarrow-\infty} f(x)=-\infty \quad \lim _{x \rightarrow \infty} f(x)=\infty
$$

14) Determine to 3 decimal places the interval(s) on which the function in problem 13 is decreasing and increasing.

$$
\begin{aligned}
& f(x) \text { inc on }(-\infty, 1.637) \cup(4.141, \infty) \\
& f(x) \text { dec on }(1.637,4.141)
\end{aligned}
$$

15) Perform the following transformation: Reflect $q(x)$ across the x-axis if $q(x)=(x-3)^{2}-5$. Write the new function and call it $p(x)$.

$$
\begin{aligned}
p(x) & =-q(x) \\
& =-\left[(x-3)^{2}-5\right] \\
p(x) & =-(x-3)^{2}+5
\end{aligned}
$$

16) What is the best fit regression curve, given the data on the right? Write the regression model.

Quadratic function

\# of minutes	3	4	5	6	8
\# of cars	8	15	24	35	63

$$
y=x^{2}-1
$$

17) Graphite Inc. makes tennis racquets. If each racquet costs $\$ 53$ to make with fixed overhead costs of $\$ 567,000$, what is the best fit regression curve? Write a function that models the cost of producing x rackets.

$$
\begin{array}{lr}
C=\text { cost } & C(x)=53 x+567000 \\
x=\# \text { of racquets } & \text { Linear function }
\end{array}
$$

18) Is the function below continuous over the real numbers? If not, state the x-values) where the discontinuity occurs and tell whether the discontinuity is removable or non-removable.
$f(x)=\frac{x\left(x^{2}-4\right)}{x^{3}-2 x^{2}-8 x}$
$f(x)=\frac{x(x-2)(x+2)}{x\left(x^{2}-2 x-8\right)}$
$=\frac{x(x-2)(x+2)}{x(x-4)(x+2)} \rightarrow \begin{aligned} & \text { discontiminties when } \\ & \text { denominates } \\ & x(x-4)(x+2)=0\end{aligned}$
$x=0, x=4, x=-2$

19) Tell whether each of the following functions is odd, even, or neither (support your answers graphically and algebraically):
a) $f(x)=\frac{x^{3}}{4-x^{2}}$

b) $g(x)=x^{2}-3$

c) $h(x)=x^{2}-2 x-2$

\therefore, not even

$$
\begin{aligned}
h(-x) & =(-x)^{2}-2(-x)-2 \\
& =x^{2}+2 x-2, \text { factor } "-" \\
& =-\left(-x^{2}-2 x+2\right) \\
& \neq-h(x)
\end{aligned}
$$

