Name:

Non-Calculator

5)

- 1) Using the graph of f(x) on the right:
 - a) estimate the value(s) of the relative max and min.

b) write the end behavior using limit notation.

$$\lim_{x \to -\infty} f(x) = \infty \text{ and } \lim_{x \to \infty} f(x) = \infty$$

2) Find the domain and range of the following:

- 3) Find $(f \circ g)(x)$ and $(g \circ f)(x)$ if $f(x) = x^2 7$ and $g(x) = \sqrt{x+3}$. Then, write the domain of each.
 - $(f \circ g)(x) = f(g(x))$ $= (\sqrt{x+3})^{2} 7$ = x+3-7 $(f \circ g)(x) = x 4$ $Domain: [-3, \infty)$ $(g \circ f)(x) = \sqrt{x^{2}-4}$ $(g \circ f)(x) = \sqrt{x^{2}-4}$ $Domain: (-\infty, -2]U[2, \infty)$
- 4) Find f(g(2)) and g(f(-1)) if f(x) = 2x 5 and $g(x) = x^2 + 3x 1$.

$$f(g(2)) = f(9) = 2(9) - 5 = 13$$

$$g(f(-1)) = g(-7) = (-7)^{2} + 3(-7) - 1 = 49 - 21 - 1$$

$$= 27$$

$$g(2) = (2)^{2} + 3(2) - 1 = 4 + 6 - 1 = 9$$

$$f(-1) = 2(-1) - 5 = -2 - 5 = -7$$
Find the inverse of:
a) $f(x) = 4x - 8$

$$y = 4x - 8$$

$$y = 4x - 8$$

$$x = 4y - 8$$

$$x = 4y - 8$$

$$f^{-1}(x) = \frac{x + 8}{4} = \frac{1}{4}x + 2$$

$$x - 9 = (y - 3)^{2}$$
Note the equation of above is NO

 $\sqrt{x-9} = \sqrt{(y-3)^2}$

Note the equation of above is NOT a function, so I don't write $h^{-1}(x)$.

 Using your knowledge of parent functions and transformations, write the function that produces the graph on the right.

```
exponential function (H. A. @ y = 1)
y = -e^{x} + 1
```


 Using your knowledge of parent functions and transformations, write the function that produces the graph on the right.

8) Sketch a graph of 3 functions that are NOT continuous over the Real Numbers.

11) Describe the transformation of $q(x) = (x - 3)^2 - 5$ from its parent function. 5 down 5 right 3 Translaste (shift) down 5 units

translate (shift) right 3 units

Then, sketch and label the graph of the function.

RAD 🚺 🗙 ◀ 1.1 ▶ Doc 🗸 1 <u>x</u> 10 -10 -6.67 $f1(x)=(x-3)^2-5$

and

Calculator

12) Find the zeroes of $f(x) = x^2 - 5x + 3$. What is the domain and range of this function?

x= 0.697, x= 4.303	A. Afor)
Domain: (-00, 00)	697 4.303
Range : [-3.25, 00)	-3.25

13) Using limit notation, write the end behavior of $f(x) = 3x^3 - 26x^2 + 61x - 30$.

$$\lim_{x \to -\infty} f(x) = -\infty \qquad \lim_{x \to \infty} f(x) = \infty$$

14) Determine to 3 decimal places the interval(s) on which the function in problem 13 is decreasing and increasing. n Fox)

$$F(x)$$
 inc on $(-\infty, 1.637) \cup (4.141, \infty)$
 $F(x)$ dec on $(1.637, 4.141)$

15) Perform the following transformation: Reflect q(x) across the x-axis if $q(x) = (x - 3)^2 - 5$. Write the new function and call it p(x).

$$P(x) = -Q(x)$$

= -[(x-3)² - 5]
$$P(x) = -(x-3)^{2} + 5$$

16) What is the best fit regression curve, given the data on the right? Write the regression model.

# of minutes	3	4	5	6	8
# of cars	8	15	24	35	63

Quadratic function
$y = x^2 - 1$

17) Graphite Inc. makes tennis racquets. If each racquet costs \$53 to make with fixed overhead costs of \$567,000, what is the best fit regression curve? Write a function that models the cost of producing *x* rackets.

C = cost	C(x)=	53x	+ 567000
x = # of racquets	Li	near	function

18) Is the function below continuous over the real numbers? If not, state the x-value(s) where the discontinuity occurs and tell whether the discontinuity is removable or non-removable.

$$f(x) = \frac{x(x^{2}-4)}{x^{3}-2x^{2}-8x}$$

$$f(x) = \frac{x(x-2)(x+2)}{x(x^{2}-2x-8)}$$

$$= \frac{x(x-2)(x+2)}{x(x-4)(x+2)} \rightarrow denominator = 0$$

$$x(x-4)(x+2) = 0$$

19) Tell whether each of the following functions is odd, even, or neither (support your answers graphically