$\qquad$

## Non-Calculator

1) Evaluate: $-7 \log 10^{3}-3$
2) Evaluate: $\log _{17} 17^{\frac{9}{14}}$
3) Solve for $m$ : $\log _{\frac{1}{5}}(\sqrt[3]{25})^{5}=m$
4) Solve for $q: \frac{1}{16}=2^{q-3}$
5) Condense the expression: $2[5 \log (x+2)+\log x]-\log (x+4)$
6) Condense: $2 \log _{3} y+\log _{3} z-\frac{1}{3} \log _{3} x$
7) Solve for $w: \log _{5}(2 w-3)=2$
8) Solve for $x: \ln 15-\ln x=\ln 3$
9) Solve for $a:-4=\log _{a} \frac{1}{16}$
10) Solve: $\frac{e^{x}-4 e^{-x}}{3}=1$
11) Solve: $\log (x-6)^{2}=4$
12) Find the domain, range, $x \& y$ - intercept, and asymptote(s) of:

$$
f(x)=-1+\log _{5}(x+3)
$$

Graph the function and label all parts.

## Calculator


13) Solve for $x: \ln (x+4)+\ln (x-3)=2 \ln 3$
14) Find the domain \& range of: $f(x)=e^{x}+7$
15) Identify the domain, range, $x \& y$-intercept, and asympotote(s) for: $f(x)=3^{x+2}-1$
16) The number of bacteria in a petri dish after $t$ hours is $\mathrm{B}=100 e^{k t}$, where $t=0$ represents the time at 12 pm . At 6 am , the number of bacteria was 42 .
a) Find $k$.
b) Using $k$, find the number of bacteria at 8 pm .
17) The population of Wellsville can be represented by $\mathrm{P}=1500 e^{k t}$, where $t=0$ is 2010. In 1990, the population was 1400 . Find $k$ and use this to predict the population in 2020.
18) You invest $\$ 1300$ at Peter Venkman's savings and take a loan at $8 \%$ interest compounded continuously. How long will it take for the balance to double?

