Review Target: Describe and convert between radian and degree measure

DOK 1 Apply		DOK2 Analyze
Express 200° in radians.		Using the diagram above, describe the bearing of Express $\frac{7 \pi}{18}$ in degrees. Karen. Convert the angle to radians.

Review Target: Describe and convert between radian and degree measure

DOK3 Analyze	DOK3 Understand	DOK4 Understand
Using the two drawings to the left, Karen is 4 feet from Stephen. How far did Karen move if she rotates from her 1 ${ }^{\text {st }}$ location to her 2 nd location?	Can the radian measure of all three angles in a triangle be integers? Explain your thinking with supporting work.	Control Tower A is 60 miles east of control tower B. At a certain time an airplane is at a navigational angle of 340 from tower A and 37° from tower B. Describe why knowing this information would be useful.

Target 5A/B: Generate Unit Circle from Special Right Triangles; Evaluate Trig Functions \& Expressions Using Unit Circle; Use Reference Angles to Evaluate Trig Ratios Given Specific Constraints

DOK 1 Remember	DOK 1 Apply	DOK2 Apply
Identify the coordinates of the point on the terminal side of $\frac{4 \pi}{3}$.	For $\theta=\frac{2 \pi}{3}$, evaluate $\sec \theta$ and $\tan \theta$.	Given $\sec \theta=\frac{13}{5}$ and $\sin \theta<0$, find $\tan \theta$.

Target 5A/B: Generate Unit Circle from Special Right Triangles; Evaluate Trig Functions \& Expressions Using Unit Circle; Use Reference Angles to Evaluate Trig Ratios Given Specific Constraints

DOK3 Apply	DOK4 Evaluate	DOK4 Understand
From a point 300 ft along a horizontal line from the base of a building, the angle of elevation to the top of the building is 42°. How tall is the building?	Explain why the sine of an acute angle is equal to the cosine of its complement.	Show how special right triangles are used to generate the unit circle.

Target 5C: Rigid and Non-Rigid Transformations of Sinusoids

Target 5C: Rigid and Non-Rigid Transformations of Sinusoids

DOK3 Understand	DOK4 Understand	DOK4 Understand
 Write two different functions for the given graph.	 A tsunami wave can be modeled by a sine curve. Describe the terminology used for a tsunami wave in terms of the terminology used for sinusoidal curves.	wn Loud, high pitched note Soft, high pitched note Loud, low pitched note Soft, low pitched note Describe the differences in the sound waves of notes shown above in terms of the terminology used for sinusoidal curves.

Target 5D: Evaluate Inverse and Composite Trigonometric Functions and Expressions Using the Unit Circle

Target 5D: Evaluate Inverse and Composite Trigonometric Functions and Expressions Using the Unit Circle

DOK3 Understand	DOK3 Apply	DOK4 Analyze
Evaluate $\cos \left(\arcsin \left(\frac{x}{2}\right)\right)$.	What is the minimum angle θ through which the doors must each be opened to prevent the cart from hitting either door?	Explain why for all real numbers x $\sin \left(\sin ^{-1} x\right)=x$ is false.

TEMPLATE

Topic

DOK 1	DOK2	DOK2	DOK3	DOK3	DOK4
Question					

