9.A - Analyzing Data

- Measures of Central Tendency:

- Mean: average value
- Medium: middle value
- Mode: most frequency occurring value(s). Bimodal means data has two modes.
- Range: the difference between the greatest and least values given a set of data.
- Quartiles: the four parts that make up the range
- Interquartile range: the difference between the first and third quartiles.
- Outlier: a value that is substantially different from the rest of the data that can be misleading and affect the measure of central tendency.
- Percentile: a number from 0 to 100 that you can associate with a value x from a data set. It show the percent of the data that are less than or equal to x . If x is at the $63^{\text {rd }}$ percentile, then 63% of the data are less than or equal to x .

Finding Measures of Central Tendency
Career The frequency table shows the number of job offers received by each student within two months of graduating with a mathematics degree from a small college. What are

Job Offers	0	1	2	3	4
Students	2	2	4	5	2

$$
\text { Mean: } \begin{aligned}
\bar{x} & =\frac{2(0)+2(1)+4(2)+5(3)+2(4)}{15} \quad \text { The symbol } \bar{x}, \text { read " } x \text { bar," represents the mean. } \\
& =\frac{33}{15}=2.2
\end{aligned}
$$

The mean is 2.2 .
Median: $0,0,1,1,2,2,2,2,3,3,3,3,3,4,4 \quad$ List each value the number of times it occurs.
The median is 2 .
Mode: Five students received 3 job offers each. The mode is 3.

Arrange them in order. Find the middle value.

The mode is the number of job offers received by most students.

Finding Percentiles

Testing Here is an ordered list of midterm test scores for a Spanish class. What value is at the 65th percentile?

Of the 20 values, 65% fall at or below the value at the 65th percentile.

$$
20 \cdot 65 \%=20 \cdot 0.65=13
$$

13 values fall at or below 82 , the value at the 65 th percentile.

Box and Whisker Plot

Calculating Outliers: 1.5 X IQR Rule

* Suspected low outlier: any value $<Q_{1}-1.5 \times I Q R$
* Suspected high outlier: any value $>\mathrm{Q}_{3}+1.5 \times \mathrm{IQR}$

Comparing Data Sets

Temperature: The tables shows average monthly water temperatures for four locations on the Gulf of Mexico. How can you compare the 12 water temperatures from St. Petersburg with the 12 water temperatures from Key West?

Gulf of Mexico Eastern Coast Water Temperatures (${ }^{\circ}$ F)

Location	J	F	M	A	M	J	J	A	S	0	N	D
St. Petersburg, Florida	62	64	68	74	80	84	86	86	84	78	70	64
Key West, Florida	69	70	75	78	82	85	87	87	86	82	76	72
Dauphin Island, Alabama	51	53	60	70	75	82	84	84	80	72	62	56
Grand Isle, Louisiana	61	61	64	70	77	83	85	85	83	77	70	65

Source: National Oceanographic Data Center

St. Petersburg:
$\bar{x}=\frac{\begin{array}{r}62+64+64+68+70+74+78 \\ +80+84+84+86+86\end{array}}{12}$

$$
=\frac{900}{12}=75 \text { (mean water temperature) }
$$

Modes: 64, 84, and 86
Min.: 62; Max.: 86; Range: $86-62=24$

Interquartile range: $Q_{3}-Q_{1}=84-66=18$

Key West:

$$
\begin{aligned}
\bar{x} & =\frac{\begin{array}{r}
69+70+72+75+76+78+82 \\
+82+85+86+87+87
\end{array}}{12} \\
& =\frac{949}{12} \approx 79.1 \text { (mean water temperature) }
\end{aligned}
$$

Modes: 82 and 87
Min.: 69; Max.: 87; Range: $87-69=18$

Interquartile range:
$Q_{3}-Q_{1}=85.5-73.5=12$

The range and the interquartile range show the temperatures varying less at Key West than at St. Petersburg. Also, the temperatures at Key West are generally higher.

Practice

1) Find the mean, median, and mode of each set of values
a. Time spent on Internet per day (in minutes): 7\$, 68, 42מ, 1220, 65, 180, 95, 225, 140 .

b.

$$
\begin{aligned}
& \frac{13(7)+14(12)+15(18)+16(9)+17(5)+18(4)+19(2)}{57} \approx 15.23=\text { mean } \\
& \text { mode }=15 \quad \text { median }=15 \rightarrow \begin{array}{l}
\text { middle } \begin{array}{l}
\text { are listed out least to greatest. }
\end{array}
\end{array} .\left\{\begin{array}{l}
\text { areencers }
\end{array}\right.
\end{aligned}
$$

2) The table shows the average monthly temperatures of two cities. How can you compare the temperatures?

	J	F	M	A	M	J	J	A	S	O	N	D
Jacksonville, Florida	52.4	55.2	61.1	67.0	73.4	79.1	81.6	81.2	78.1	69.8	61.9	55.1
Austin, Texas	48.8	52.8	61.5	69.9	75.6	81.3	84.5	84.8	80.2	71.1	60.9	51.6

3) Make a box and whisker plot for each set of values:

b. $126,145,183,185,117,150,130,186,1 / 88$

4) Find the outlier(s), if any, of the following data sets:
a. $50,60,73,77,80,81,82,83,84,84,84,85,88,95,100$

b. $10.2,14.1,14.4,14.4,14.4,14.5,14.5,14.6,14.7,14.7,14.7,14.9,15.1,15.9,16.4$
$Q_{1}=14.4$

\hat{Q}_{3}
$Q_{3}=14.9$

$$
\left.\begin{array}{rl}
\text { Outlier } & <Q_{1}-1.5(1 O R) \\
& <14.9-1.5(0.5) \\
\text { Outlier } & <13.65
\end{array}\right\}
$$

\} ~ O u t l i e r ~ $>Q_{3}+1.5(\mathrm{IQR})$
$1 Q R=0.5$

$$
>14.9+1.5(0.5)
$$

$$
\begin{gathered}
\text { Outliers } \\
\hline 10.2 \\
15.9 \\
16.4
\end{gathered}
$$

5) Find the values at the $30^{\text {th }}$ and 90 percentile for each data set.
a. $6283,5700,6381,6274,5700,5896,5972,6075,5993,5581$
$5581,5700,5700,5896,5972,5993,6075,6274 \sqrt[6283]{6381}$
$\begin{array}{ll}\text { 10terms }(.30)=3^{\text {rd }} \text { term } & 10 \text { terms }(.90)=9^{\text {th }} \text { term } \\ 5700 \text { is at the } 30^{\text {th }} \text { percentile } & 6283 \text { is at the } 90^{\text {m }} \text { percentile }\end{array}$
b. $7,12,3,14,17,20,5,3,17,4,13,2,15,9,15,18,16,9,1,6$
 20 terms (.30) $=6^{\text {th }}$ term $\quad 20$ terms $(.90)=18^{\text {th }}$ term
5 is at the $30^{\text {th }}$ percentile 17 is at the $90^{\text {th }}$ percentile
