

Definition of nth Root

For any real numbers a and b, and any positive integer n, if $a^{n}=b$, then $a=\sqrt[n]{b}$.

Find Roots
Recall rule: $a^{n} \cdot a^{m}=a^{n+m},\left(a^{m}\right)^{n}=a^{m n}$
Simplify. Assume all variables are positive.

1. $\sqrt[2]{25 x^{4}}$
$\sqrt[2]{(5)^{2} x^{2} x^{2}}$

$$
\frac{5 x x}{5 x^{2}}
$$

3. $\sqrt[5]{32 x^{15} y^{20}}$

$$
\begin{gathered}
\sqrt[5]{(2)^{5} x^{15} y^{20}} \\
2 x^{3} y^{4}
\end{gathered}
$$

2. $-\sqrt[2]{225 a^{8} b^{10}}$

$$
\begin{gathered}
-\sqrt[2]{(3)^{2}(5)^{2}\left(a^{4}\right)^{2}\left(b^{5}\right)^{2}} \\
-3 \cdot 5 \cdot a^{4} \cdot b^{5} \\
-15 a^{4} b^{5}
\end{gathered}
$$

4. $\sqrt[2]{-9}$
$\sqrt{-1 \cdot 9}$
5. $\pm \sqrt{16 x^{6}}$
6. $\sqrt[3]{(2 y)^{6}}$
7. $\pm \sqrt{16 x^{6}}$

$$
\pm \sqrt[2]{16 x^{6}}
$$

$$
\pm 4 x^{3}
$$

7. $\sqrt[3]{-27 c^{9} d^{12}}$

$$
\frac{\sqrt[3]{(-3)^{3} c^{9} d^{12}}}{\left(-3 c^{3} d^{4}\right)}
$$

6. $\sqrt[3]{(2 y)^{6}}$

$$
\left(2^{\prime} y\right)^{2}=2^{2} y^{2}=4 y^{2}
$$

MII : $\sqrt[3]{(2 y)^{3}(2 y)^{3}}$ $2 y \cdot 2 y$
$\left.4 y^{2}\right)$
8. $\sqrt[3]{\frac{1}{125}}$

$$
=\frac{\sqrt[3]{1}}{\sqrt[3]{125}}=\frac{1}{\sqrt[3]{(5)^{3}}}=\frac{1}{5}
$$

