5.6. Advanced Algebra

Radical Expressions (Part 2)

Target 10B. Perform operations on radical expressions with various indices.

Product Property of Radicals

For any real numbers a and b and any integer $n>1$,

1. If n is even and a and b are both nonnegative, then $\sqrt[n]{a b}=\sqrt[n]{a} \cdot \sqrt[n]{b}$
2. If n is odd, then $\sqrt[n]{a b}=\sqrt[n]{a} \cdot \sqrt[n]{b}$

Simplify each expression.

1. $\sqrt[2]{16 p^{8} q^{7}}$
$\sqrt[2]{2^{4} p^{8} q^{6} q}=\alpha^{2} p^{4} q^{3} \sqrt{q}=4 p^{4} q^{3} \sqrt{q}$.
2. $\sqrt[3]{75 a^{6} b^{13}}$
$\sqrt[3]{5^{2} \cdot 3 a^{6} b^{12} b}=a^{2} b^{4} \sqrt{75 b}$

困
 Quotient Property of Radicals

For any real numbers a and $b \neq 0$, and any integer $n>1$,

Quotient Property of Radicals

For any real numbers a and $b \neq 0$ ，and any integer $n>1$ ，
$\sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{\sqrt[n]{b}}$ ，if all roots are defined．

Simplify each expression and rationalize the denominator．
3．$\sqrt{\frac{x^{4}}{y^{5}}}=\frac{\sqrt[2]{x^{4}}}{\sqrt[2]{y^{4} y}}=\frac{x^{2}}{y^{2} \sqrt{y}} \cdot \frac{\sqrt{y}}{\sqrt{y}}=\frac{x^{2} \sqrt{y}}{y^{2} \cdot y}$
4．$\sqrt[5]{\frac{5}{4 a}}=\frac{\sqrt[5]{5}}{\sqrt[5]{2^{2} a}} \cdot \frac{\sqrt[5]{2^{3} \cdot a^{4}}}{\sqrt[5]{2^{3} a^{4}}}=\frac{\sqrt[5]{40 a^{4}}}{2 a}$
$=\frac{x^{2} \sqrt{y}}{y^{3}}$
You can use the Product and Quotient Properties to multiply and divide some radicals，respectively．

Multiply Radicals
5． $6 \sqrt[3]{9 n^{2}} \cdot 3 \sqrt[3]{24 n}$
6． $5 \sqrt[3]{100 a^{2}} \cdot \sqrt[3]{10 a}$

You can use the Product and Quotient Properties to multiply and divide some radicals, respectively.

Multiply Radicals
5. $6 \sqrt[3]{9 n^{2}} \cdot 3 \sqrt[3]{24 n}$
6. $5 \sqrt[3]{100 a^{2}} \cdot \mid \sqrt[3]{10 a}$
$18 \sqrt[3]{216 n^{3}}$
$5 \cdot \sqrt[3]{1000 a^{3}}$
$18 \cdot \sqrt[3]{2^{3} \cdot 3^{3} n^{3}}$
5. $\sqrt[3]{10^{3} a^{3}}$
$18 \cdot 2 \cdot 3 \cdot n=108 n$
$5 \cdot 10 \cdot a=50 a$

You cannot add radicals in the same manner in which you multiply them.
You can only add/subtract radicals if they are "like radical expressions". This means that both the indices and the radicand are alike.

May 22 2014.GWB - 4/4 - Thu May 222014 08:41:42
5-6 Radical Expressions Part 2 - Microsoft Word
File Home Insert Page Layout References

Add and Subtract Radicals
7. $2 \sqrt{12}-3 \sqrt{27}+2 \sqrt{48}$
8. $3 \sqrt{45}-5 \sqrt{80}+4 \sqrt{20}$

$$
\begin{aligned}
& 2 \sqrt[2]{2^{2} \cdot 3}-3 \sqrt[3]{3^{2} \cdot 3}+2 \cdot \sqrt[2]{2^{4} \cdot 3} \\
& 2 \cdot 2 \sqrt{3}-3 \cdot 3 \sqrt{3}+2 \cdot 2^{2} \cdot \sqrt{3} \\
& 4 \sqrt{3}-9 \sqrt{3}+8 \sqrt{3} \\
& 3 \sqrt{3}
\end{aligned}
$$

$$
\begin{gathered}
3 \sqrt[2]{3^{2} \cdot 5}-5 \cdot \sqrt[2]{2^{4} \cdot 5}+4 \sqrt[2]{2^{2} \cdot 5} \\
3 \cdot 3 \sqrt{5}-5 \cdot 2^{2} \cdot \sqrt{5}+4 \cdot 2 \sqrt{5} \\
9 \sqrt{5}=20 \sqrt{5}+8 \sqrt{5} \\
-3 \sqrt{5}
\end{gathered}
$$

CHECK UNDERSTANDING:

$$
1 \sqrt{5}+3 \sqrt{7}+2 \sqrt{5}=?
$$

Multiply Radicals Using the Distributive Property $\quad 3 \sqrt{5}+3 \sqrt{7}$!
9. $(3 \sqrt{5}-2 \sqrt{3})(2+\sqrt{3})$
10. $(5 \sqrt{3}-6)(5 \sqrt{3}+6)$

