

Find the volume of the pyramid.

$$V = \frac{1}{3} \cdot B \cdot h$$

$$= \frac{1}{3} (144) \cdot b$$

$$= 288 + 3$$

B=12·12

Find the ratio of the volume of the pyramid to the volume of the prism.

Ratio:
$$\frac{288}{864} = \frac{1}{3}$$

What can you conclude?

If a prism and a pyr. have the same base dimensions and height, then = prism = pyramid Prism = 3 Pyramids

Valume

Find the volume of the cone.

$$V = \frac{1}{3}\pi r^{2}h$$

$$= \frac{1}{3}\pi (5)^{2}(12)$$

$$= 100\pi in^{3}$$

Find the ratio of the volume of the cone to the volume of the cylinder.

Ratio:
$$\frac{100 \text{ M}}{300 \text{ M}} = \frac{1}{3}$$

What can you conclude?

Volume

Examples

1. If the volume of a cone is 24 cubic inches. What is the volume of a cylinder with the same base and height as the cone? 24.3 = 72 cuin

2. If the volume of a cylinder is 47 cubic feet. What is the volume of a cone with the same base and height as the cone?

47 cu. f+

3. If the volume of a prism is 450 cubic centimeters. What is the volume of a pyramid with the same base and height as the prism?

 $450 = 150 \, \text{cu. cm}$

- 4. If the volume of a pyramid is 15 cubic meters. What is the volume of a prism with the same base and height as the pyramid? 15.3 = 45 cu, m
- 5. A pyramid has a square base with a diagonal of 10. Each lateral edge measures 13. Find the volume of the pyramid.

6. A rocket has the dimensions shown. If 60% of the space in the rocket is needed for fuel, what is the volume, to the nearest whole unit, of the portion of the rocket that is available for nonfuel items?

