5-6 Rational Functions and Their Graphs

Target 3B. Graph transform and identify the key features of the graph of a rational function.

Vertical Asymptotes and Point Discontinuity

Examples of rational functions:

$$f(x) = \frac{x}{x+3}$$

$$g(x) = \frac{5}{x - 6}$$

$$g(x) = \frac{5}{x-6} \qquad h(x) = \frac{x+4}{(x-1)(x+4)}$$

No denominator in a rational function can be zero because division by zero is not defined. In the examples above the functions are not defined at $x = _{-3}$ $x = _{-6}$ and $x = \underline{\hspace{1cm}}$ and $x = \underline{\hspace{1cm}}$ respectively.

The graphs of rational functions may have breaks in continuity. This means that unlike polynomial functions which can be traced with a pencil never leaving the paper not all rational functions are traceable. Breaks in continuity can appear as a vertical asymptote or as point discontinuity (hole).

Point of Discontinuity			
Key Concept	Words	Example	Model
Vertical Asymptote	If the rational expression of a function is written in simplest form and the function is undefined for $x = a$ then $x = a$ is a non-removable discontinuity.	For $f(x) = \frac{x}{x-3}$, $x = 3$ is a vertical asymptote. If $f(x)$ is in simplest form. Non-removable	vertical asymptote (@x=3
<u>Hole</u>	If the original function is undefined for $x = a$ but the rational expression in simplest form is defined for $x = a$ then there is a removable discontinuity in the graph at $x = a$.	$f(x) = \frac{(x+2)(x-1)}{x+2}$ Can be simplified to $f(x) = x-1$. So $x = \frac{-2}{x}$ represents a hole in the graph.	To the second se

6. $f(x) = \frac{x^2 - 8x + 16}{x - 4} = \frac{(x - 4)(x - 4)}{(x - 4)} = \frac{x - 4}{x - 4}$ No discontinuity in donominator

· Removable @ X=4, So HOLE @ X=4

· No non-removable, su No V.A.

X-4=0 (-0,4) U(4,00)