Honors Advanced Algebra DATE:

5-6 Rational Functions and Their Graphs

Target 3B. Graph transform and identify the key features of the graph of a rational function.

Vertical Asymptotes and Point Discontinuity

Examples of rational functions:
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x+3 XxX—6

No denominator in a rational function can be zero because division by zero is not defined. In
the examples above the functions are not defined at x = _—3 x=__ G and
x=__1 _andx=_—Y respectively.

The graphs of rational functions may have breaks in continuity. This means that unlike
polynomial functions which can be traced with a pencil never leaving the paper not all rational
functions are traceable. Breaks in continuity can appear as a vertical asymptote or as point
discontinuity (hole).
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Find the domain and points of discontinuity of each rational function.
the discontinuities are removable or non-removable. Then find t
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