▼ STUDENT PAGES 409-412

You can solve systems with rational equations using some of same methods you used with linear systems.

Activity 1

Follow each direction to solve the system $\begin{cases} y = \frac{x}{3x-1} \\ y = \frac{1}{3x-1} \end{cases}$

- 1. Set the expressions for y equal to each other.
- 2. Solve for x.
- 3. Check your answer by substituting in the original system.

Activity 2

Follow each direction to solve the system $\begin{cases} x - 2 = \frac{6}{y} \\ y + 1 = r \end{cases}$

- 4. Solve each equation for y.
- Set the resulting expressions equal to each other.
- 6. Solve for x.
- 7. Check your answer by substituting in the original system.

Exercises

Solve each system.

8.
$$\begin{cases} \frac{y}{x^2 - 4x + 3} = -2\\ x - 2y = 3 \end{cases}$$

$$9. \begin{cases} y = \frac{1}{x} \\ y = \frac{3}{4 - x^2} \end{cases}$$

10.
$$\begin{cases} y = x^2 - 2x - 2 \\ y = \frac{x^2 + x - 6}{x + 3} \end{cases}$$

11.
$$\begin{cases} y = \frac{x+2}{x^2+3x+2} + 2 \\ y - 3 = x \end{cases}$$

@ 12. Reasoning It is possible for the graph of a system of rational equations to include a point of intersection that is an extraneous solution? Explain.

$$\bigcirc \frac{x}{3x-1} = \frac{1}{x+1}$$

(2) LCD: (3x-1)(X+1)

$$\frac{x}{3x-1}(x+1) = \frac{1}{x+1}(3x-1)(x+1)$$

$$x(x+1) = 3x-1$$

$$x^2 + x = 3x-1$$

$$-3x - 3x$$

$$x^2 - 2x = -1$$

$$x^{2}-2x=-1$$

 $+1$
 $+1$
 $+1$
 $+1$

$$(x-i)(x-1) = 0$$

ORIGINAL SYSTEM.
$$\frac{1}{2} = \frac{1}{2}$$
 V. OLID

$$\begin{cases} y = \frac{1}{3(1)-1} = \frac{1}{2} \\ y = \frac{1}{1+1} = \frac{1}{2} \end{cases}$$
 Solution: $(1, \frac{1}{2})$

Activity 2

$$(4) \quad X-2 = \frac{6}{y} \quad \text{multiply by } y$$
to both sides of ea

$$x-2 = \frac{6}{y}$$
 multiply by y to both sides of eq

$$\frac{\lambda(x-5)}{\lambda(x-5)} = \frac{6}{(x-5)}$$

$$y = \frac{6}{x-2}$$

$$\lambda + 1 = X$$

$$6 = x^2 - 1x - 2x + 2$$

$$0 = x^2 - 3x - 4$$

lue graphically or algebraically.

when
$$x = y$$
:

 $y = x - 1$

When $x = y$:

 $y = 4 - 2 = 6$
 $y = 3$

When $x = -1$:

 $y = -1 = -2$

$$\lambda = -1 - 1 = -5$$