\qquad $10 / 25$
Solving Systems of Equations by Substitution
Target $3 B$ ．Solve a system of equations graphically and algebraically．

Substitution Method：one equation is solved for one variable in terms of the other．Then，this expression is substituted for the variable in the other equation．

Solve each system of equations by the substitution method．
1． $2 x+y=6$ Is one of the equations in the system solved for a variable？
$\underline{y}=x+3$ Yes，the second equation is solved for y ．This is desired when solving by substitution．Now，substitute the expression $x+3$ for y in It equation（see arrow top left）．

$$
\begin{aligned}
& 2 x+(x+3)=6 \\
& 2 x+x+3=6 \text { "Drop parenthesis" } \\
& \begin{array}{l}
3 x+3=6 \\
\frac{-3-3}{3 x=3}
\end{array} \quad x=1
\end{aligned}
$$

$$
\text { To find } y \text {, substitute } \mid \text { for } x \text { in } y=x+3 \text {. }
$$

$$
\begin{aligned}
y & =x+3 \\
y & =1+3 \\
& =4
\end{aligned}
$$

Solution：

$$
(1,4)
$$

3. $2 x+y=5$ Is one of the equations in the system solved for a variable?
$\mid x-y=1$

$$
\begin{aligned}
& x-y=1 \\
& +y+y
\end{aligned}
$$

$$
x=y+1
$$

$$
x=1+1
$$

$$
=2
$$ No. Must solve for x or y in $1^{\text {st }}$ or $2^{\text {nd }}$ eq

which to solve for? It does nt mather, but
$I^{\prime} l l$ choose to solve for x in second equation.

$$
2(y+1)+1 y=5
$$

Solution:

$$
2 y+2+1 y=5
$$

$$
\begin{gathered}
\lambda \frac{3 y}{3}=\frac{3}{3} \\
y=1
\end{gathered}
$$

$$
\begin{aligned}
& 3 y+2=5 \\
& -2=-2
\end{aligned}
$$

4. $x+4 y=26$ Is one of the equations in the system solved for a variable?
$x-5 y=-10$

Extra Practice：Solve each system of equations by the substitution method．

5． $2 x+y=4$
$3 x+2 y=1$

6．$x+2 y=8$
$\frac{1}{2} x-y=18$

Extra Practice: Solve each system of equations by the substitution method.

$$
-a+2 b=-3
$$

$\binom{x y}{22,-7}$
5.

$$
\begin{aligned}
& 2 x+y=4 \\
& 3 x+2 y=1 \\
& x+2 y=8 \\
& \frac{1}{2} x-y=18
\end{aligned}
$$

6.
7.

$$
\begin{aligned}
& g+3 h=8 \\
& \frac{1}{3} g+h=9
\end{aligned}
$$

(8)

$$
\begin{aligned}
& 2 a-4 b=6 \\
& -a+2 b=-3
\end{aligned}
$$

(\#6)

$$
\text { 6) } \begin{aligned}
& x+2 y=8 \\
& \frac{-2 y-2 y}{x=-2 y+8}
\end{aligned}
$$

$$
-y+4-y=18
$$

$$
-2 y+y=18
$$

$$
\begin{aligned}
&-4-4 \\
& \frac{-2 y}{-2}=\frac{14}{-2} \\
& y=-7
\end{aligned}
$$

(\#8)

$$
\begin{aligned}
& 2 a-4 b=6 \\
&-a+2 b=-3 \\
& 2(2 b+3)-4 b=6 \\
& 4 b+6-4 b=6 \\
& 6=6 \text { True }
\end{aligned}
$$

$6=6$ True
Infinitely many solutions!

$$
\begin{aligned}
& \text { 8) } \left.\begin{array}{l}
2 a-4 b=6 \\
-a+2 b=-3 \\
2(2 b+3)-4 b=6
\end{array} \quad \begin{array}{l}
-2 b-2 b \\
\frac{-a}{-1}=\frac{-2 b-3}{-1}-1 \\
a=(2 b+3
\end{array}\right]
\end{aligned}
$$

