Honors Advanced Algebra Target 7A: Walk Around

DATE:

Directions: Complete each problem and show your work. Check your answers.

15x +20y =0 Algebraically, we have: $-\frac{3}{4}x = |x+3| \implies -\frac{3}{4}x = x+3 \text{ or}$ x-12

(y=x2 -OR-algebraically =-1±V12-4(1X-5	$-3x = 4x + 32$ $-\frac{3}{4}x = -x -$
Graph to How do you = $-1\pm\sqrt{2}i$ $x=-1\pm\sqrt{2}i$ $x=-1\pm\sqrt{2}i$ $x=-1\pm\sqrt{2}i$ $x=-1\pm\sqrt{2}i$	Howdo -7x = 12 -3x = -4x
$\begin{cases} y = \log_{10} X \rightarrow common \log \\ y = 3x \end{cases}$	$\begin{cases} y = 17x + 1 & y = 17x + 1 \\ y = -24x + 68 & = 17(6741) + 1 \end{cases}$
No intersection since y = 3x goes through origin and y = log x doesn't. You can see this visually by graphing No solution	$ \frac{17x+y=-24x+68}{24x-(-+24x-1)} = \frac{1139}{41} + 1 $ $ \frac{24x-(-+24x-1)}{41} = \frac{1139}{41} + \frac{41}{41} $ $ x = 67/41 = \frac{1180}{41} \cdot \frac{118}{41} $
(you com y = -x +8 (you com graph it, too)	$\begin{cases} y = -x + 2 \\ y = x + 2 \end{cases}$
Twovid tell him -x+8=-zx+16 +bat mathematically to the system is (8,0) x=8 Twovid tell him that mathematically speaking the solution to the system is (8,0) and the meaning of it	-x+2=x+2 $+x=+x$ $= +x$ $= -x$ (You can graph it, too)
depends on context.	0 = 2x ⇒ x=0
⊅!	D!
①	(io)
B!	

1.	At which point do the two equations $3x + 5 = y + 4x$ and $y = x^2$ intersect?	
2.	At which point do the equations $y = x + 3 $ and $15x + 20y = 0$ intersect?	
3.	Find the intersection point of $y = \log x$ and $y = 3x$.	
4.	Find the intersection of the two equations $y = 17x + 1$ and $y = -24x + 68$.	
5.	Imagine you're interviewing for a position with Shmoop (your dream job, obvious you don't want to screw it up. Dave, the interviewer, asks you to find the intersection the equations $y = -x + 8$ and $y = -2x + 16$. What do you tell him?	ly) and on of
6.	Which of the following points is on both line $y = -x + 2$ and line $y = x + 2$? (A) (0, 0)	
	(B)(0,1)	
	(C)(0,-1)	
	(D) $(0, 2)$	
7.	When estimating the intersection of two lines on a graph, you can get a precise ans this statement true or false?	wer. Is
	(A) True, since graphs are always exactly correct when it looks as if the line is specifically at one point	
	(B) False, because one can never be completely sure if the graph is correct since it depends highly on the sensitivity of the graph	
	(C) False, since graphs offer limited visibility and it's usually impossible to see the function	entire
	(D) Both (B) and (C)	

- 8. Your classmate needs to find the points of intersection of two very simple equations. She makes a table that lists 5 or so integers and finds a point of intersection. She thinks she's done and goes to play outside. What do you think of this?
 - (A) She's definitely done. She should go have fun!
 - (B) A table of values may not show the full story because there may be points of intersection missed, but they're easy equations so she's probably done.
 - (C) She isn't finished until she's graphed the two functions and visually seen their intersection point.
 - (D) There's no way she's finished. She has to calculate it mathematically only.
- 9. When you find a point on a graph that you think is the intersection, the best way to double check your answer is to:
 - (A) Plug in the x value to see if one of the y values of one of the equations matches the one you approximated from the graph
 - (B) Plug in the x value to see if both of the y values of both of the equations match the one you approximated from the graph
 - (C) Plug in the y values to see if one of the x values of one of the equations matches the one you approximated from the graph
 - (D) None of the above
- 10. The most accurate way of finding the points of intersection of a system of equations is via:
 - (A) A table of values
 - (B) A graph
 - (C) Using algebra to solve for the variables
 - (D) None of the above