Name: \qquad
Period: \qquad

Target 5C: Use graphs and tables to compare the output values of linear, quadratic, and exponential functions and compare properties of two differently* represented functions. (*algebraically, graphically, numerically in tables, or by verbal descriptions).
11. Find the vertex of each function and determine which has the greatest y-value in the coordinate of its vertex. (1 point)

$$
\begin{gathered}
\text { Function } \boldsymbol{f}_{\boldsymbol{A}} \\
f_{A}(x)=5 x^{2}+2 x+1
\end{gathered}
$$

12. Select the function that has the greatest y-intercept. (1 point)
Function $\boldsymbol{f}_{\boldsymbol{A}}$
Function $\boldsymbol{f}_{\boldsymbol{B}}$

$f_{A}=4^{x} \quad$| \boldsymbol{x} | -2 | -1 | 0 | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\boldsymbol{f}(\boldsymbol{x})$ | 7 | 0 | -5 | -8 | -9 |

13. Determine the function that has the greatest output value (y) when $x=-3$. (1 point)

$$
f(x)=7 x+32 \quad g(x)=5^{x} \quad h(x)=x^{2}-2 x+11
$$

14. Match the function with the correct table. Then, determine the missing values in the function. (3 points)

Table A

\boldsymbol{x}	\boldsymbol{y}
-2	0
-1	15
0	24
1	27
2	24
3	
4	

Table B

\boldsymbol{x}	\boldsymbol{y}
-2	$\frac{1}{4}$
-1	$\frac{1}{2}$
0	1
1	
2	
3	8
4	16

Table C

x	y
0	-1
1	2
2	
3	8
4	11
5	

$$
\begin{aligned}
f(x)=2^{x}: & \text { Table___} \\
g(x)=3 x-1: & \text { Table } \\
h(x)=-3(x+2)(x-4): & \text { Table }
\end{aligned}
$$

15. Superman, Batman, and Iron Man are racing through the city toward the shoreline. Use the properties of the equations for Superman $d=3^{t}$, Batman $d=t^{4}$, and Iron Man $d=7 t$, to explain their speeds in the following time intervals, where t is time in minutes and d is distance. (3 points)

Superman $d=3^{t}$	Batman $d=t^{4}$	Iron Man $d=7 t$	
$0 \leq t<1$			
$1 \leq t<2$			
$2 \leq t<3$			

Is there a point when there is a 3 way tie? If so, when is this?

If the shoreline is far away, who will get there first? Why?

Target 5D: Transform graphs based on changes in equations and write equations based on a translation of a parent graph.
16. Identify the transformation from graph A to graph B. Write the function of Graph B in the space provided. (1 point)

17. Describe the transformation of $f(x)=7^{(x-8)}$ from the parent function $f(x)=7^{x}$. (1 point)
18. Transform the parent function $f(x)=x^{2}$ by shifting 10 units down and 8 units right. (1 point)
19. The function $y=x^{2}$ has its vertex at $(0,0)$. Write the standard form equation that results if $y=x^{2}$ is shifted to the right by 5 units and up by 6 units. What are the new coordinates of the vertex? (3 points)

$$
y=(x-h)^{2}+k
$$

20. Consider the relationship between Fahrenheit and Kelvin temperatures. Using your graphing calculator, graph these two functions on the same set of axes: (3 points)
(Ti Nspire: Menu: 6: Analyze Graph, 4: Intersection)

$$
\begin{gathered}
f_{1}=x \\
f_{2}=\frac{5}{9}(x-32)+273
\end{gathered}
$$

a) Describe in transformational terms, how the first graph becomes the second graph.
b) At what temperature are the Fahrenheit and Kelvin readings the same?

ADVANCED (10 possible points)

On the grid are eight points from two different functions.
A linear function passes through exactly four of the points shown.
A quadratic function passes through the remaining four points.

For the linear function:

1. Write the coordinate pairs of its four points:
\qquad , \qquad ,
\qquad , \qquad

Draw the line on the grid.
2. Write an equation for the function. Show your work.

For the quadratic function:
3. Write the coordinate pairs of its four points:
\qquad
\qquad
\qquad
\qquad

Draw the graph of the function on the grid.
4. Write an equation that fits the quadratic function. Show your work.

