\qquad

Target 5C: Use graphs and tables to compare the output values of linear, quadratic, and exponential functions and compare properties of two differently* represented functions. (*algebraically, graphically, numerically in tables, or by verbal descriptions).
11. Find the vertex of each function and determine which has the greatest y-value in the coordinate of its vertex. (1 point)

Function f_{A}
$f_{A}(x)=5 x^{2}+2 x+1$

Function f_{B}

12. Select the function that has the greatest y-intercept. (1 point)

13. Determine the function that has the greatest output value (y) when $x=-3 . \mid$ (1 point)

$$
\begin{array}{lll}
\begin{array}{l}
f(x)=7 x+32 \\
f(-3)=7(-3)+32
\end{array} & g(-3)=5^{g(x)=5^{x}}= & h(x)=x^{2}-2 x+11 \\
f(-3)=11 & g(-3)=\frac{1}{125} & h(-3)=(-3)^{2}-2(-3)+11 \\
& & h(-3)=26
\end{array}
$$

14. Match the function with the correct table. Then, determine the missing values in the function. (3 points)
Table A

x	y
-2	0
-1	15
0	24
1	27
2	24
3	15
4	0

Table B

x	y
-2	$\frac{1}{4}$
-1	$\frac{1}{2}$
0	1
1	2
2	4
3	8
4	16

Table C

x	y
0	-1
1	2
2	5
3	8
4	11
5	14

$$
\begin{aligned}
& \text { *plug in } \\
& \text { x-values } \\
& \text { to get } \\
& \text { y-values! }
\end{aligned}
$$

15. Superman, Batman, and Iron Man are racing through the city toward the shoreline. Use the properties of the equations for Superman $d=3^{t}$, Batman $d=t^{4}$, and Iron Man $d=7 t$, to explain their speeds in the following time intervals, where t is time in minutes and d is distance. (3 points)

	Superman$d=3^{t}$		Batman$d=t^{4}$		Iron Man$d=7 t$	
$0 \leq t<1$	$3^{0}=1$	$3^{1}=3$	$0^{4}=0$	$1^{4}=1$	$7(0)=0$	$7(1)=7$
	$1 \leq d<3$		$0 \leq d<1$		$0 \leq d<7$	
$1 \leq t<2$	$3^{1}=3$	$3^{2}=9$	$\mathbb{1}^{4}=1$	$2^{4}=16$	$7(1)=7$	$7(2)=14$
	$\mathbf{3} \leq \boldsymbol{d}<\mathbf{9}$		$1 \leq d<16$		$7 \leq d<14$	
$2 \leq t<3$	$3^{2}=9$	$3^{3}=27$	$2^{4}=16$	$3^{4}=81$	$7(2)=14$	$7(3)=21$
	$9 \leq d<27$		$16 \leq d<81$		$14 \leq d<21$	

Is there a point when there is a 3 way tie? If so, when is this?
NO. All superheroes are at a different distance for every time interval.

If the shoreline is far away, who will get there first? Why?

SUPERMAN. Exponential functions grow faster over time.

Target 5D: Transform graphs based on changes in equations and write equations based on a translation of a parent graph.
16. Identify the transformation from graph A to graph B. Write the function of Graph B in the space provided. (1 point)

Graph A	Graph B
$f(x)=x^{2}$	$f(x)=(x-2)^{2}$

17. Describe the transformation of $f(x)=7(x-8)$ from the parent function $f(x)=7^{x}$. (1 point) Translated 8 units to the right.
18. Transform the parent function $f(x)=x^{2}$ by shifting 10 units down and 8 units right. (1 point)

$$
f(x)=(x-8)^{2}-10
$$

19. The function $y=x^{2}$ has its vertex at $(0,0)$. Write the standard form equation that results if $y=x^{2}$ is shifted to the right by 5 units and up by 6 units. What are the new coordinates of the vertex? (3 points)

$$
y=(x-5)^{2}+6 \quad y=(x-h)^{2}+k
$$

$$
y=x^{2} \underbrace{2}-5 x-5 x+\frac{25+6}{}
$$

$$
y=x^{2}-10 x+31
$$

20. Consider the relationship between Fahrenheit and Kelvin temperatures. Using your graphing calculator, graph these two functions on the same set of axes: (3 points)
(Ti Nspire: Menu: 6: Analyze Graph, 4: Intersection)

$$
\begin{gathered}
f_{1}=x \\
f_{2}=\frac{5}{9}(x-32)+273
\end{gathered}
$$

a) Describe in transformational terms, how the first graph becomes the second graph.

Vertical stretch of a factor of $\frac{5}{9}$
Translation of 32 units right and 273 units up
b) At what temperature are the Fahrenheit and Kelvin readings the same?

$(574,574)$
$574{ }^{\circ} \mathrm{F}$ is equal to 574 K .

ADVANCED (10 possible points)

On the grid are eight points from two different functions.

A linear function passes through exactly four of the points shown.

A quadratic function passes through the remaining four points.
For the linear function:

1. Write the coordinate pairs of its four points:

$$
(1,9),(2,6),(3,3),(4,0)
$$

Draw the line on the grid.
2. Write an equation for the function. Show your work.
$M=-3$ (pick an x, y to $9+b^{\prime \prime}$.
$y=-3 x+b$ (pick an x, y to get " b ") $q=-3(1)+b$
$9=-3+b$
$+3+\frac{1}{1}$
$12=b$

$$
\begin{aligned}
& y=m x+b \\
& y=-3 x+12
\end{aligned}
$$

For the quadratic function:
3. Write the coordinate pairs of its five points:

$$
\begin{aligned}
& x y \quad \text { h.k } \\
& (0,0),(2,4),(3,3),(4,0)
\end{aligned}
$$

Draw the graph of the function on the grid.
4. Write an equation that fits the quadratic function. Show your work.
$y=a(x-h)^{2}+k$
$y=a(x-2)^{2}+4$
$0=a(0-2)^{2}+4$
(pick an $x . y$ to get " a ")
$0=a(-2)^{2}+4$
$y=-1(x-2)^{2}+4$
$0=4 a+4$
-4
-4
$\begin{aligned} \frac{-4}{4} & =4 \\ -1 & =a\end{aligned}$

