5.2. Honors Geometry

DATE: \qquad $12 \quad 20$

Target 4A. Understand and apply special angle relationships when parallel lines are cut by a transversal
Exterior Angle Inequality Theorem
The exterior < of a Δ is greater in measure than either remote interior \angle. (Proof on page 216)

Given: $m \angle B C D$ (Exterior \angle)
Prove: $m \angle B C D>m \angle A$

$$
m \angle B C D>m \angle B
$$

Parallel Theorems

Alternate Interior Angle Theorem (indirect proof)
H states- Given: $\angle 1 \equiv \angle 2$
Prove: all
Proof by contradiction: Either all or att b. Assume a th b. Then line a and be will intersect at some pt. P (seedingram on right lower corner). According to the Exterior \angle Inequality $T h m, \leq 1>L 2$. This contradicts given statement $\leq 1 \cong \angle 2$. Our assumption is FALSE. $\therefore a l l b-$

Given: $\angle \mathrm{O} \cong \angle \mathrm{S}$

$$
\overline{O S} \cong \overline{R P}
$$

$$
\begin{aligned}
& O S \cong R P \\
& \overline{C O} \cong \overline{N S}
\end{aligned}
$$

Prove: $\overline{\mathrm{CR}}|\mid \overline{\mathrm{NP}}$

December 20 H 2012.gwb - 3/5 - Thu Dec 202012 16:43:40

Parallel Theorems Based on our Aspire investigation, we concluded

- Alternate interior $\angle s \cong \Longleftrightarrow$ lines \| ($a \| b$)

$$
\text { Ex: } \angle 3 \&<6, \angle 4 \&<5 \text { (2pairs) }
$$

- Alternate exterior $\angle s \cong<\Longrightarrow$ lines $\|(a \| b)$
Ex: $<18<8, \angle 2 d<7$ (2 pairs)
- Corresponding $\angle S \cong<$ lines || (all)

$$
\text { Ex: } \angle 18<5, \angle 28<6, \angle 32 \angle 7, \angle 48<8 \text { (4pairs) }
$$

- Same -side interior $\angle 5$ supplementary \Longleftrightarrow lines \|I (a\|b)

$$
\text { Ex: } \angle 38 \angle 5, \angle 4 d<6
$$

- Samp-side exterior LS supplementary \Rightarrow

Page: 1 of 2 Words: 49 trines $\|(a \| b)$

$$
E x: \angle 18<7, \angle 2:<8
$$

