PERIOD

3-8 Solving Equations and Formulas

(Pages 166–170)

Some equations contain more than one variable. To solve an equation or formula for a specific variable, you need to get that variable by itself on one side of the equation. When you divide by a variable in an equation, remember that division by 0 is undefined.

When you use a formula, you may need to use **dimensional analysis**, which is the process of carrying units throughout a computation.

Examples

a. Solve the formula d = rt for t.

The variable t has been multiplied by r, so divide each side by r to isolate t.

 $\frac{d}{r} = \frac{rt}{t} \text{ or } \frac{d}{r} = t$

Thus $t = \frac{d}{r}$, where $r \neq 0$.

b. Find the time it takes to drive 75 miles at an average rate of 35 miles per hour.

Use the formula you found for t in Example A.

$$t = \frac{d}{r}$$

$$t = \frac{75 \text{ mi}}{35 \frac{mi}{h}}$$

$$t = 2 \frac{1}{7} \text{ hours}$$
Use dimensional analysis.

$$\frac{mi}{h} = \frac{mi}{1} \cdot \frac{h}{mi} = h$$

Try These Together

1. Solve 4a + b = 3a for a. HINT: Begin by subtracting 3a from each side. **2.** Solve $\frac{c+d}{3} = 2c$ for *c*. HINT: Begin by multiplying each side by 3.

Practice

Solve each equation for the variable specified.

3. $f = epd$, for <i>e</i>	4. $12 g + 31h = -8g$, for h	5. $y = mx + b$, for <i>b</i>
6. $v = r + at$, for <i>r</i>	7. $\frac{3x + y}{c} = 4$, for <i>c</i>	8. $\frac{5xy + n}{2} = -6$, for y
9. $m + n + 2p = 3$, for m	10. $6y + z = bc - 2y$, for y	11. $3x - 4y = 7$, for y
12. $s = \frac{n}{2}(a + t)$, for <i>n</i>	13. $v = \frac{4}{3}r$, for r	14. $W = mgh$, for <i>g</i>
15. $PV = nRT$, for <i>V</i>	16. $G = F - D$, for D	
17. $6t + 62s = \frac{1}{2}(3t - 42s), t$	for t 18. $3c + 5d =$	= 7d - 6c, for d

19. Standardized Test Practice Four ninths of a number *c* increased by 4 is 18 less than one eighth times another number *d*. Solve for *c*.

A
$$c = \frac{9}{32}d + 31\frac{1}{2}$$
 B $c = \frac{4}{72}d + \frac{4}{72}$ **C** $c = \frac{9}{32}d - 49\frac{1}{2}$ **D** $c = \frac{4}{72}d - 31\frac{1}{2}$

Answers:
$$\mathbf{1} \cdot a = -b$$
 $\mathbf{2} \cdot c = \frac{d}{5}$ $\mathbf{3} \cdot e = \frac{t}{pd}$ $\mathbf{4} \cdot h = \frac{-20g}{31}$ $\mathbf{5} \cdot b = y - mx$ $\mathbf{6} \cdot f = v - at$ $\mathbf{7} \cdot c = \frac{3x + y}{4}$ $\mathbf{8} \cdot y = \frac{-12}{6x}$
 $\mathbf{9} \cdot m = 3 - n - 2p$ $\mathbf{10} \cdot y = \frac{bc - 2}{8}$ $\mathbf{11} \cdot y = \frac{3x - 7}{4}$ $\mathbf{12} \cdot n = \frac{2s}{4}$ $\mathbf{13} \cdot r = \frac{3}{4}v$ $\mathbf{14} \cdot g = \frac{W}{mh}$ $\mathbf{15} \cdot V = \frac{nRT}{p}$ $\mathbf{16} \cdot D = F - G$
 $\mathbf{17} \cdot t = -\frac{1660}{2}$ $\mathbf{18} \cdot d = \frac{9c}{2}$ $\mathbf{19} \cdot C$