\qquad

5C - Comparing Funtions

* Vocabulary, Formulas, Theories:
- Vertex: the turning point of a parabola.

- Intercepts: the x-intercept is the point where the graph crosses the x-axis and the y-intercept is where the graph crosses the y-axis.

- Input/Output Values of a Function: the input value is what's plugged into a function to create an output value. For example, given $f(x)=2 x+3$, the input is x and the output is $f(x)$, or y . If it is evaluated for a number, like 4 , the equation would be written as $f(4)=2(4)+3=11$ where the input of 4 produces an output of 11 .

Video - "Comparing Vertices - Example" - MathontheWeb (3:41)
EX1) Determine the function that has the vertex with the smallest y value.
a.

b. $y=x^{2}-4 x$
c.

x	$f(x)$
-4	0
-3	3
-2	4
-1	3
0	0

图 Video - "Comparing Y-Intercepts - Example" - MathontheWeb (4:26)
EX2) Determine the function that has the largest y-intercept.
a.

b. $y=x^{2}+x+2$
c.

x	$f(x)$
-2	9
-1	3
0	-1
1	-3
2	-3
3	-1
4	3

Video - "Input and Output Values - Example" - MathontheWeb (4:46)
EX3) Given an input value of $x=-3$, rank the output of the functions from least to greatest.
a. $y=2 x-2$
b. $y=x^{2}+3 x-1$
c. $y=3^{-x}+2$
d.

e.

x	$f(x)$
-5	-6.5
-4	-6.0
-3	-5.5
-2	-5
-1	-4.5

Video - "Comparing Functions - Example 1" - MathontheWeb (6:40)
EX4) Determine which table matches each of the given functions: $f(x), g(x)$, and $h(x)$. Then fill in the missing table values.
$f(x)=-2 x+5$
$g(x)=-3(x-1)(x+5)$
$h(x)=4^{x}$

Table \mathbf{B}	
x	\mathbf{y}
-2	$?$
-1	$?$
0	5
1	3
2	1
3	-1
4	-3

Table \mathbf{C}	
x	y
-2	$?$
-1	24
0	15
1	0
2	-21
3	-48
4	$?$

(1) Video - "Comparing Functions - Example 2" - MathontheWeb (13:39)

EX 5) Three vehicles leave a starting location at the same time. Each vehicle has an equation that represents the distance traveled where t is time in minutes and d is distance in miles.
a. Fill in the chart with the range of distance (in miles) for the given interval of time (in minutes).
b. Will the vehicles have traveled the same distance at any point of time? Explain why or why not.
c. Over a long period of time, which vehicle travels the farthest? Which travels the shortest?

Vehicle	Equation for Distance ($\mathrm{d}=$ miles; t minutes)
A	$d=1.5{ }^{t}-1$
B	$\boldsymbol{d}=0.5 t^{2}$
C	$d=0.5 t$

Time Interval (minutes)	Vehicle A Range of Distances (miles)	Vehicle \mathbf{B} Range of Distances (miles)	Vehicle \mathbf{C} Range of Distances (miles)
$0 \leq t \leq 1$			
$1 \leq t \leq 2$			
$2 \leq t \leq 3$			
$3 \leq t \leq 4$			

