Corresponding Parts of Similar Triangles

Student Activity

education.ti.com

Open the TI-Nspire document Corresponding_Parts_of_Similar_Triangles.tns.

This activity asks you to change the scale factor (*r*) between similar triangles and move one of the similar triangles to find corresponding parts and establish relationships between them.

Move to page 1.2.

- 1. The triangles pictured are similar. Select Δ and ∇ in the bottom left corner of the screen.
 - a. What happens to $\triangle DET$ as the scale factor *r* changes?
 - b. What happens to \overline{AY} and \overline{DE} as *r* changes?
- 2. Use Δ and ∇ to change *r*.
 - a. What is the relationship between the two triangles when r = 1?
 - b. What is the relationship between the two triangles when 0 < r < 1?
 - c. What is the relationship between the two triangles when r > 1?

1

Move to page 2.1.

- 3. a. Move point S around the circle. What happens to ΔDET ?
 - b. Move point C. What happens to $\triangle DET$?

1.1 1.2 2.1 Correspondin[1] 🗢 🛛 🕻 🗙			
Corresponding Parts of Similar Triangles			
Select \blacktriangle and \triangledown to change the number <i>r</i> and observe the similar triangles.			

Ų.

Date ____

Name

Ų.	Corresponding Parts of Similar Triangles	Name	
	Student Activity	Date	

- 4. Move $\triangle DET$ by dragging points *S* and *C*. Position $\triangle DET$ on top of the other triangle so that a pair of corresponding angles match up (are coincidental).
 - a. List the three pairs of corresponding angles.
 - b. List the three pairs of corresponding sides.
 - c. Write a similarity statement for the two triangles and justify your answer.

Move to page 3.1.

- 5. Change the value of *r* and drag copies of $\triangle AMY$. How many copies of \overline{AY} would it take to cover \overline{DE} when
 - a. *r* = 3?
 - b. *r* = 0.5?
 - c. *r* = 1.5?
- 6. If \overline{AY} is 2 units, \overline{AM} is 4.25 units, and \overline{YM} is 3.25 units, what are the measures of \overline{ET} , \overline{DE} , and \overline{DT} when
 - a. *r* = 1?
 - b. *r* = 0.75?
 - c. *r* = 4?