\qquad

6B - Recognizing Similarity

Vocabulary, Formulas, Theories:

- Similar Figures: figures that are the same shape but not necessarily the same size.
- Scale Factor: the ratio of corresponding sides of similar figures.
- Angle Angle Similarity (AA~): If two angles of one triangles are congruent to two angles of another triangle, the triangles are similar.

$$
\text { If: } \begin{aligned}
& \Varangle A \cong \Varangle D \\
& \Varangle B \cong \Varangle E
\end{aligned}
$$

Then: $\triangle A B C \sim \triangle D E F$

- Side Angle Side Similarity (SAS~): If an angle of one triangle is congruent to the corresponding angle of another triangle and the length of the sides including these angles are in proportion, the triangles are similar.

If: $\begin{aligned} \Varangle A & \cong \Varangle D \\ \frac{A B}{D E} & =\frac{A C}{D F}\end{aligned}$
Then: $\triangle A B C \sim \triangle D E F$

- Side Side Side Similarity (SSS~): If the three sets of corresponding sides of two triangles are in proportion, the triangles are similar.

If: $\frac{A B}{D E}=\frac{A C}{D F}=\frac{B C}{E F}$
Then: $\triangle A B C \sim \triangle D E F$

- Parallel Lines Cut by a Transversal: a set of parallel lines that is crossed by a lined called a transversal creates several congruent angles and supplementary angles.
- Corresponding Angles: $\angle 1 \cong \angle 5, \angle 2 \cong \angle 6, \angle 3 \cong \angle 7, \angle 4 \cong \angle 8$
- Vertical Angles: $\angle 1 \cong \angle 4, \angle 2 \cong \angle 3, \angle 5 \cong \angle 8, \angle 6 \cong \angle 7$
- Alternate Interior Angles: $\angle 3 \cong \angle 6, \angle 4 \cong \angle 5$
- Alternate Exterior Angles: $\angle 1 \cong \angle 8, \angle 2 \cong \angle 7$
- Supplementary Angles: $\angle 1$ and $\angle 2, \angle 1$ and $\angle 3, \angle 1$ and $\angle 6, \angle 1$ and $\angle 7, \angle 2$ and $\angle 4$, $\angle 2$ and $\angle 8, \angle 2$ and $\angle 5, \angle 3$ and $\angle 4, \angle 3$ and $\angle 5, \angle 3$ and $\angle 8, \angle 4$ and $\angle 6, \angle 5$ and $\angle 6$, $\angle 5$ and $\angle 7, \angle 6$ and $\angle 8, \angle 7$ and $\angle 8$.

睤 Video－＂Similarity－Side Side Side－Example＂－MathontheWeb（3：10）
EX1）Determine if the triangles are similar．If so，state the reason why．If not，explain．
a）

b）

睛 Video－＂Similarity－Angle Angle－Example＂－MathontheWeb（4：37）
EX2）Determine if the triangles are similar．If so，state the reason why．If not，explain．
a）

b）

䁅 Video－＂Similarity－Side Angle Side－Example＂－MathontheWeb（4：47）

EX3）Determine if the triangles are similar．If so，state the reason why．If not，explain．

b）

EX4) Determine if the triangles are similar. If so, state the reason why. If not, explain.
a)

b)

c)

㽗 Video - "Similarity - Two Column Proof - Example" - MathontheWeb (6:04)

EX5) Complete a two column proof.

Given :

- $\angle \mathrm{F}$ and $\angle \mathrm{FHG}$ are supplementary

Prove:

Δ DEF $\sim \Delta$ GEH

Extra Resources:

https://www.mathsisfun.com/geometry/parallel-lines.html

