\qquad

6C - Applying Theorems

Vocabulary, Formulas, Theories:

- Similar Figures: figures that are the same shape but not necessarily the same size.
- Scale Factor: the ratio of corresponding sides of similar figures.
- Side Splitter Theorem: If a line is parallel to one side of a triangle and intersects the other two sides, then it divides those sides proportionally.

If : $\overline{D E} \| \overline{A C}$
Then: $\frac{B D}{D A}=\frac{B E}{E C}$

Many problems involving similar triangles have one triangle ON TOP OF (overlapping) another triangle.
Since $\overline{D E}$ is marked to be parallel to $\overline{A C}$, we know that we have $<B D E$ congruent to
$\angle D A C$ (by corresponding angles). $\angle B$ is shared by both triangles, so the two triangles are similar by AA.

- Corollary to the Side Splitter Theorem: If three (or more) parallel lines intersect two transversals, then the segments intercepted on the transversals are proportional.

If: 3 (or more) lines are \|
Then: $\frac{a}{b}=\frac{c}{d}$

䀦 Video - "Similarity - Finding Unknown Values - Example 1" - MathontheWeb (7:44)
EX1) The given triangles are similar. Determine the value of the unknown variables.
a)
$\Delta F G H \sim \Delta J K L$

b) $\triangle A B C \sim \triangle D E F$

睤 Video－＂Similarity－Finding Unknown Values－Example 2＂－MathontheWeb（6：52）
EX2）Determine the value of the known variables．
a）

b）

䁌 Video－＂Similarity－Finding Unknown Values－Example 3＂－MathontheWeb（5：54） EX3）Determine the value of the unknown variables．
a）

b）

睤 Video－＂Similarity－Finding Unknown Values－Example 4＂－MathontheWeb（9：45）
EX4）Maritza stands next to her cottage and measures her shadow and the cottage＇s shadow．Her shadow is 8 feet long and the cottage＇s shadow is 48 feet long．Maritza is standing at a height of 6 feet．Draw a diagram and calculate the height of her cottage．

EX5）Jack stands at a height of 1.3 meters．He is 7 meters in front of a post and casts a shadow 1.8 meters long．Draw a diagram and calculate the height of the post．

