Date: Solutions

8B - Compound Events

- Vocabulary, Formulas, Theories:
 - Compound Event: an event that is made up of two or more events.
 - **Intersection:** a compound event when P(A) and P(B) will happen. It's written like this: P(A and B). If A and B are independent, the following formula is used:

$$P(A \text{ and } B) = P(A) \cdot P(B)$$

- Mutually Exclusive Events (disjoint): events that cannot happen at the same time. For example, you cannot roll a 2 and a 5 on a standard number cube at the same time. These events are mutually exclusive. The probability of both happening is zero. If events A and B are mutually exclusive, then P(A and B) = 0
- **Union**: a compound event when P(A) or P(B) will happen. It's written like this: P(A or B). If the events are mutually exclusive, the following formula can be used:

$$P(A \text{ or } B) = P(A) + P(B)$$

Overlapping Events (non-disjoint): events that have outcomes in common. For example, when rolling a standard number cube, the events of an even number and a multiple of 3 overlap because the number 6 meets both conditions. If events A and B are overlapping, they follow this formula:

$$P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$$

Video #1 - "Probability - Intersection and Union - Example" - Don't Memorise (4:12)

EX1) Jack has a bag of numbers 1 through 10 and he is going to select a number from the bag. The probability of him pulling an even number will be P(A) and the probability of him pulling a number greater than 5 will be P(B). P(A and B) = 30

- a) Find P(A and B)
- b) Find P(A or B)

A: even #+ \$ 2,4,6,8,10}

B: #75 > 16,7,8,9,103

P(AorB) = P(A) + P(B) - P(A andB) = 5 + 5 - 3 = 5+5-3 = 7

Video #2 - "Multiplication Rules Probability Independent Events" - Daniel Schaben (8:58)

EX2) Frankie flips a coin and rolls a six-sided number cube. What is the probability that he flips heads and rolls a 5?

EX3) Given a standard deck of 52 cards, Maria has to randomly pick one card, put it back, and pick a second card. What are the chances of picking a diamond her first pick(and)a king on her second pick? What about if she didn't replace the card after her first pick? WITHOUT REPLACEMENT

$$P(\lozenge \text{ and } K) = P(A \text{ and } B) = P(A) \cdot P(B)$$

$$= \frac{13}{52} \cdot \frac{4}{52}$$

$$= (1)$$

$$\frac{13}{52} \cdot \frac{4}{51} = \boxed{\frac{1}{5}}$$

EX4) John needs to pick two marbles out of a bag of 3 red marbles and 2 black marbles. If he picks a marble, puts it back and picks another marble, find the following probabilities:

- a. two red marbles
- b. two black marbles
- c. red and a black

a.
$$P(2 \text{ red marbles})$$

$$= P(\text{pick red AND pick red again})$$

$$= P(\text{red}) \cdot P(\text{red})$$

$$= \frac{3}{5} \cdot \frac{3}{5}$$

$$= \frac{9}{25}$$

Video #3 - "Addition Rules for Probability" - Daniel Schaben (14:49)

EX5) Given a standard deck of 52 cards, find the following probabilities using the given events.

A = picking an ace B = picking a king C = picking a club

Notice no intersection E = picking a red F = picking a black

a. P(A or B)
b. P(A or C)
c. P(A or E)

$$= P(A) + P(C) - P(A \text{ and } C)$$

$$= P(A) + P(B)$$

$$= P(B) + P$$

EX6) Given that two six sided dice were rolled, find the following probabilities using the given events.

A = sum of 7 B = both are even C = rolling at least one 3

a.
$$P(A \text{ or } B)$$

b. $P(A \text{ or } C)$

b. $P(A \text{ or } C)$

$$= P(A) + P(C) - P(A \text{ onel } C)$$

$$= P(A) + P(B)$$

$$= \frac{6}{36} + \frac{9}{36}$$

$$= \frac{15}{36} = \frac{5}{12}$$

$$= \frac{15}{36} = \frac{5}{12}$$

* Extra Resources:

https://www.youtube.com/watch?v=v1CB9eA2XvE

https://www.youtube.com/watch?v=DOooyE6liLY

Example 6

CL

		Second throw						
		1	2	3	4	5	6	
First throw	1	(1,1)	(1, 2)	(1,3)	(1,4)	(1,5)	(1,6)	
	2	(2,1)	(2,2)	(2,3)	(2.4)	(2,5)	(2.6)	
	3	(3,1)	(3, 2)	(3,3)	(3,4)	(3,5)	(3.6)	
	4	(4,1)	(4.2)	(4.3)	(4.4)	(4.5)	(4.6)	
	5	(5,1)	(5,2)	(5,3)	(5,4)	(5,5)	(5,6)	
	6	(6,1)	(6,2)	(6,3)	(6,4)	(6,5)	(6,6)	

Sum of 7

		Second throw					
		1	2	3	4	5	6
•	1	(1,1)	(1, 2)	(1,3)	(1,4)	(1,5)	(1,6)
li santa	2	(2,1)	(2, 2)	(2,3)	(2,4)	(2,5)	(2,6)
First	3	(3,1)	(3, 2)	(3,3)	(3,4)	(3,5)	(3,6)
throw	4	(4,1)	(4,2)	(4.3)	(4,4)	(4,5)	(4,6)
	5	(5,1)	(5,2)	(5.3)	(5,4)	(5,5)	(5,6)
	6	(6,1)	(6, 2)	(6,3)	(6,4)	(6,5)	(6,6)

		Second throw						
		1	2	3	4	5	6	
First throw	1	(1,1)	(1, 2)	(1,3)	(1,4)	(1,5)	(1,6)	
	2	(2,1)	(2, 2)	(2,3)	(2,4)	(2,5)	(2,6)	
	3				(3,4)			
	4				(4,4)			
	5	(5,1)	(5, 2)	(5,3)	(5,4)	(5,5)	(5,6)	
	6	(6,1)	(6, 2)	(6,3)	(6,4)	(6,5)	(6,6)	

Checkpoint &B # 6

