
## You can use a tree diagram to organize information.

- 35% of a group of plants prefer the sun.
- 80% of the plants that received sun, grew.
- 15% of the other plants grew.

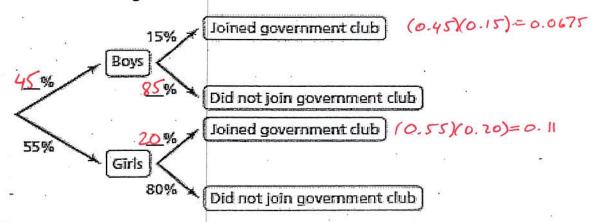


Find the following probabilities.

1. P (Sun and Grew)

2. P(No Sun and Grew)

$$=(0.65)(0.15) = 0.0975$$


To determine the probability, multiply the probabilities along each branch.

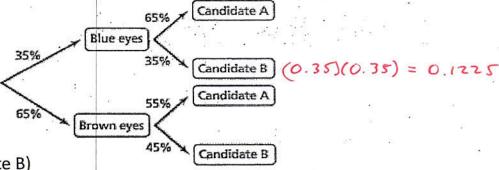
3. P (Grew) = P (Sun and Grew) + P (No Sun and Grew)

$$= 0.28 + 0.0975$$

To combine probabilities of an outcome, add all the favorable outcomes.

The following represents the percent of boys and girls in the 10<sup>th</sup> grade at a school, and whether they joined the student government club.



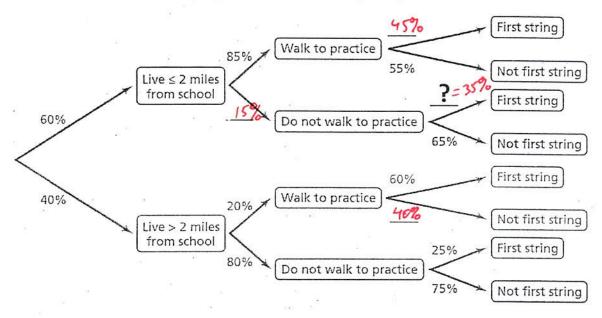

- 4. Complete the tree diagram by filling in the blanks.
- 5. Find P(Girls AND Did not join government club)

6. What is the overall percentage of students who joined the government club?

= 
$$(0.45)(0.15) + (0.55)(0.20) = 0.0675 + 0.11 = [0.1775]$$
 or  $[7.75\%]$ 

The tree diagram shows the percent of blue-eyed voters and brown-eyed voters that voted for

2 candidates.




7. P (Blue Eyes AND Candidate B)

$$=(0.35)(0.35)=(0.35)^2=0.1225$$

8. What is the overall percentage of voters who voted for candidate A?

The tree diagram below shows the percentage of a school's basketball players who live within 2 miles of school, whether or not they walk to practice, and whether or not they are one of the 5 players in the first string (players who start the game).



9. Explain what the probability of the "?" in the blank on the tree diagram represents.

"The probability a player is First String given he or she lives < 2 miles from school and doesn't walk to practice.

Find P(Lives > 2 miles from school AND Walks to practice)

11. What is the overall percentage of basketball players who Live  $\leq$  2 miles from school who do not walk to practice and are not on the first string?

$$= (0.60)(0.15)(0.65) = 0.0585$$
 or  $[5.85\%]$