

Sketch the graph of each function. Then state the function's domain and range.

1.
$$y = 2(3)^x$$

2.
$$y = 0.5(4)^x$$

Determine whether each function represents exponential growth or decay.

3.
$$y = 2(4)^x$$

4.
$$y = 0.4 \left(\frac{1}{3}\right)^x$$

5.
$$y = 3\left(\frac{5}{2}\right)^x$$

Solve each equation. Check your solution.

6.
$$3^{n-2} = 27$$

7.
$$2^{n+4} = 32^{-1}$$

10.1. Advanced Algebra

DATE: _____

P24: Solving Exponential Growth/Decay Problems

Target 4B. Model and evaluate applications involving exponential growth and decay

Growth:

$$y = a(1+r)^x$$

Decay:

$$y = a(1-r)^x$$

a = initial amount before measuring growth/decay

r = growth/decay rate (often a percent)

X = number of time intervals that have passed

- 1) Given the equation $y = 225(1.23)^x$
- a) Does this equation represent growth or decay?
- b) What is the rate of growth or decay?
- c) What is the initial value?
- d) Evaluate for x = 2
- 2) Given the equation $y = 154(1.06)^{x}$
- a) Does this equation represent growth or decay?
- b) What is the rate of growth or decay?
- c) What is the initial value?
- 3) Given the equation $y = 35(0.57)^x$
- a) Does this equation represent growth or decay?
- b) What is the rate of growth or decay?
- c) What is the initial value?
- d) Evaluate for x = 3

For each word problem, write the exponential equation to model the situation. Then, solve the problem.

- 4) A zombie infection at Morton East High School grows by 15% per hour. The initial group of zombies was a group of 4 sophomores. How many zombies are there after 6 hours?
- 5) Ryan is saving for his college tuition. He has \$2,550 in a savings account that pays 6.25% annual interest. How much money does he have at the end of two years?

6) Cars depreciate in value over time. A used car was purchased for \$12,329 this year. Each year the car's value decreases 8.5%. How much is the car worth after five years?
7) Jeremiah owns a side business detailing cars. His first year he made \$10,500 and each of the following years his profit increased 9%. How much money did he make in three years?
8) There are 128 teams entered in a basketball tournament. Half of the teams are eliminated each round. How many teams are left after 4 rounds?
9) Bacteria in a dirty glass triple every hour. If there are 25 bacteria to start, what is the bacteria count after 1 day?
10) The population of a city of 750,000 people is devastated by an unknown virus that kills 20% of the population per day. How many people are left after a week?
11) There are 1,750,235 acres of forest in northwestern Idaho. One-half percent of the forest is destroyed by pollution every year. How many acres are left after 65 years?
12) A new Ipod is estimated to lose 25% of its value every six months after purchase. How much is the value of an Ipod that costs \$299 after someone has owned it for 2 years?
13) A recent college graduate accepts a job at Google Inc. The job has a salary of \$47,000 and is guaranteed an annual pay increase of 3%. What is the person's salary at the beginning of their 10 th year of work?

P25

Rewrite each equation in exponential form.

1)
$$\log_{13} 169 = 2$$

2)
$$\log_{17} 289 = 2$$

3)
$$\log_9 \frac{1}{81} = -2$$

4)
$$\log_{36} 6 = \frac{1}{2}$$

Rewrite each equation in logarithmic form.

5)
$$6^3 = 216$$

6)
$$361^{\frac{1}{2}} = 19$$

7)
$$16^{-\frac{1}{4}} = \frac{1}{2}$$

8)
$$6^2 = 36$$

Evaluate each expression.

9)
$$\log_6 \frac{1}{36}$$

11)
$$\log_2 \frac{1}{64}$$

1) $13^2 = 169$

2) $17^2 = 289$

3) $9^{-2} = \frac{1}{81}$

4) $36^{\frac{1}{2}} = 6$

5) $\log_6 216 = 3$

6) $\log_{361} 19 = \frac{1}{2}$

7) $\log_{16} \frac{1}{2} = -\frac{1}{4}$

8) $\log_6 36 = 2$

9) -2

10) 2

11) -6

12) 5

Write each equation in logarithmic form.

1.
$$5^3 = 125$$

2.
$$7^0 = 1$$

3.
$$3^4 = 81$$

4.
$$3^{-4} = \frac{1}{81}$$

5.
$$\left(\frac{1}{4}\right)^3 = \frac{1}{64}$$

6.
$$7776^{\frac{1}{5}} = 6$$

Write each equation in exponential form.

7.
$$\log_6 216 = 3$$

8.
$$\log_2 64 = 6$$

9.
$$\log_3 \frac{1}{81} = -4$$

$$10.\log_{10} 0.00001 = -5$$

11.
$$\log_{25} 5 = \frac{1}{2}$$

$$12.\log_{32} 8 = \frac{3}{5}$$

Evaluate each expression.

$$14.\log_{10}0.0001$$

15.
$$\log_2 \frac{1}{16}$$

$$16.\log_{\frac{1}{3}}27$$

19.
$$\log_7 \frac{1}{49}$$

$$20.\log_66^4$$

$$21.\log_3\frac{1}{3}$$

22.
$$\log_4 \frac{1}{256}$$

23.
$$\log_9 9^{n+1}$$

Solve each equation.

25.
$$\log_{10} n = -3$$

$$26.\log_4 x = \frac{3}{2}$$

$$27.\log_4(2a+8) = 2$$

$$28.\log_8(3x+7) = \log_8(7x+4)$$

$$29.\log_7(3x-1) = \log_7(2x+3)$$

Advanced Algebra – Expand/Condense Logs P27

Name:

• Expand the expression:

1.
$$\log_{10} 7x^5$$

2.
$$\log_4 \frac{x^2}{9}$$

3.
$$\log_{10}(3y^5z^3)$$

Condense the expression:

4.
$$5 \log_2 x - \log_2 3$$

5.
$$\log_{10} 8 + 4 \log_{10} y$$

4.
$$5 \log_2 x - \log_2 3$$
 5. $\log_{10} 8 + 4 \log_{10} y$ 6. $7 \log_{10} x - 2 \log_{10} y$

Solve the equation:

7.
$$\log_2 5 + 4 \log_2 m = \log_2 405$$

8.
$$\log_3 42 - \log_3 n = \log_3 7$$

10.4. Advanced Algebra

P28: Common Logarithms

DATE:

Target 4E. Solve exponential and logarithmic equations.

<u>Common Logarithms</u>: base 10 logarithms (common logarithms are usually written without the subscript 10; $y = \log_{10} x$ is written as $y = \log x$)

Sometimes an application of logarithms requires that you use the inverse of logarithms, or exponentiation. Here is an example:

Solve $\log x = \frac{1}{4}$ for x.

Solve Logarithmic Equations Using Exponentiation

Solve each equation and round to four decimals if necessary.

$$1.\log_4 r = 3$$

2.
$$\log z = -2$$

3.
$$\log_3(4x - 5) = 5$$

4.
$$\log_2 y = \frac{1}{2}$$

Solving Exponential Equations Using Logarithms

Solve each equation and round to four decimals if necessary.

5.
$$3^x = 11$$

6.
$$11^x = 25.4$$

7.
$$4^{5n} = 30$$

8.
$$3.1^{a-3} = 9.42$$

9.
$$3^{n+2} = 14.5$$

10.
$$4^{3c} = 10$$

11.
$$6^{x+2} = 18$$

12.
$$7^{3x-1} = 21$$

10.5. Advanced Algebra

DATE: _____

P29: Base e and Natural Logarithms

Target 4E. Solve exponential and logarithmic equations.

e, the natural base: the irrational number 2.71828...

Evaluate Natural Base Expressions

Use a calculator to evaluate each expression to four decimal places.

1. e^{2}

2. $e^{-1.5}$

3. e^{-8}

4. $e^{0.5}$

In, the natural logarithm: $\log_e x = \ln x$

Evaluate Natural Logarithmic Expressions

Use a calculator to evaluate each expression to four decimal places.

5. ln 4

6. ln 0.05

7. ln 3

8. $\ln \frac{1}{4}$

Inverse Property of Base e and Natural Logarithms

Evaluate each expression.

9. $e^{\ln 7}$

- 10. $\ln e^{4x+3}$
- 11. $e^{\ln 21}$

12. $\ln e^{\frac{1}{5}}$

Solve Base e Equations

Solve each equation.

13.
$$5e^{-x} - 7 = 2$$

14.
$$3e^{-2x} + 4 = 10$$

$$15. \ 2e^x - 5 = 1$$

16.
$$3 + e^{-2x} = 8$$

Solve Natural Log Equations

Solve each equation.

17.
$$\ln 5x = 4$$

18.
$$\ln(x-1) = -2$$

19.
$$\ln 3x = 0.5$$

20.
$$ln(2x - 3) = 2.5$$

Advanced Algebra	Name:	
P30-Compounded Interest Practice	Period:	Date:
Solve each of the following		

Soive each of the following.

- 1. If \$500 was invested at 4% compounded annually for 10 years, how much money would there be after 10 years?
- 2. What principal will amount to \$2000 if invested at 4% interest compounded semi-annually for 5 years?
- 3. What principal will amount to \$1750 if invested at 3% interest compounded quarterly for 5 years?
- 4. A thousand dollars is left in a credit union drawing 7% compounded monthly. What is the balance at the end of 10 years?
- 5. An 8.5% account earns continuous interest. If \$2500 is deposited for 5 years, what is the total accumulated?

Challenge Problem

6. You lend your friend \$100 at 10% continuous interest. If you are repaid 2 months later, how much will your friend have to pay you?