Practice SWIG

Key Name:

4.A. Understand the relationships between exponential functions and their graphs.

1. What is the range of $y = 4(0.5)^x - 2$?

Range: | { y | y > -2 } |. In other words, y > -2, any number bigger than -2.

2. Write an example of an exponential decay function. Ex: $y = 2(0.75)^{x}$ since 0.75 is less than 1.

- 3. Which type of function is represented in the graph?
- a) Exponential growth
- (b))Exponential decay
- c) neither
- 4. What is the equation of the graph?
- a) $y = 4^x$
- b) $y = \frac{1}{2}^{x}$
- c) $y = \frac{1}{2} (4)^x$
- $(d) y = 4 \left(\frac{1}{2}\right)^x$
- $e) y = 2\left(\frac{1}{4}\right)^x$

Remember: Y=a(b)^x

This number is will cross the y-axis.

Use the graph above for #3 and 4

4.B. Model and evaluate applications involving exponential growth and decay.

5. The population of Cicero is 35,000 and increasing at the rate of 3% per year. Write a growth model to represent this situation.

Growth Model: y = a (1+r)

a = 35,000

f = 3% = 0.03

 $y = 35,000(1+0.03)^{x}$ $y = 35,000(1.03)^{x}$

Unit 4—Exponential & Logarithmic Functions

- 6. The tiger population beginning in 2003 at an African Wildlife Park can be represented by the model of $y=4500(.94)^{t}$.
- a. How many lions are in the park in 2003?

b. Based on the model, are the number of lions increasing or decreasing?

c. What percent of the lion population grows/decays each year?

$$y = a(1-r)^{x}$$
 is the decay model. So $1-.94=.6$. [:. 6%

You deposit \$5500 in an account that pays 5% interest per year. How much will be in the account at the end of five years if the bank:

7. compounds continuously \longrightarrow use $A = Pe^{rt}$

compounds continuously
$$\rightarrow$$
 use $A = Pe$

$$A = Pe$$

$$A = Pe$$

$$P = 5,500 \quad C = 0.05, t = 5$$
(use in #7 and #8)
$$A = Pe^{rt}$$

$$A = Pe^{rt}$$
compounds quarterly
$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

$$P = 5,500$$

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

8. compounds quarterly

3. compounds quarterly

Use
$$A = P(1+f_n)^{nt}$$
 $P = 5,500$

$$= 5,500(1+\frac{0.05}{4})^{4.5}$$
 $P = 0.05$

$$= 5,500(1+\frac{0.05}{4})^{4.5}$$
 $P = 0.05$

$$= 5,500(1+\frac{0.05}{4})^{4.5}$$
 $P = 5,500$

$$= 5,500$$

$$= 5,500(1+\frac{0.05}{4})^{4.5}$$

$$= 5,500$$

$$= 5,500$$

4.C. Understand how to move between exponential and logarithmic forms.

9. Rewrite the equation in exponential form: $y = \log_{3} z$

Same as
$$\log_3 \frac{2}{2} = \frac{1}{3}$$

10. Rewrite the equation in logarithmic form: $5^x = 625$

4.D. Simplify logarithmic expressions.

11. Evaluate: log_10 / = 3.3219 to four decimal places

4.E. Solve exponential and logarithmic equations

12. Solve for x:
$$3^{x} = 15$$

$$\begin{array}{c} |og_{3}|5 = x \\ \hline 2.4650 \approx x \end{array}$$

13. Solve for x:
$$3e^{x} - 1 = 11$$

$$\frac{3e^{x} - 1}{3} = 12$$

$$e^{x} = 12$$

$$e^{x} = 4$$

$$\log_{e} 4 = x$$

$$\ln_{e} 4 = x$$

14. Solve for x:
$$\log_4(3x+5) = \log_4(2x-1)$$

$$3 \times + 5 = 2 \times - ($$

$$-2 \times -2 \times$$

$$\times + 5 = -1$$

$$-5 = -5$$

$$\boxed{\times = -6}$$

15. Solve for x:
$$\log_2(2x-1)=3$$

$$\begin{cases} 2^{3} = 2 \times -1 \\ 2^{3} = 2 \times -1 \\ 8 = 2 \times -1 \\ +1 & +1 \end{cases}$$

$$\frac{9}{2} = \frac{2}{2} \times \frac{4.5}{2} \times \frac{4.5}{$$

16. You invest \$6,000 in an account earning 7.5% annual interest compounded yearly.

How long will it take your money to double?

from 6,000 to 12,000

12,000 = 6,000 (
$$1 + 0.075$$
)

12,000 = 6,000 ($1 + 0.075$)

12,000 = 6,000 (1.075)

6,000

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

$$\frac{12,000 = 6,000}{6,000} (1.075)^{t}$$

$$2 = 1.075^{t} \longrightarrow 1.075 = 3$$

4.F. Condense and expand logarithms using logarithmic properties

17. Expand the expression: $\log 3x^2$

18. Condense the expression:
$$3 \ln x - 2 \ln y$$

$$3 \ln x - 2 \ln y$$

$$= \ln x^3 - \ln y^2$$

$$= \ln \left(\frac{x^3}{y^2}\right)$$