
## Venn Diagrams

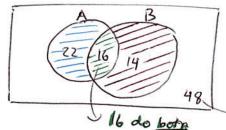
There are 100 students. 38 of them read comic books. Draw a Venn diagram to represent the situation. What is the probability that a randomly selected student...

100-38=62 Venn diagram

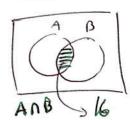


- whole space 100 students
  - a) reads comic books? (call this event A)

$$P(A) = \frac{38}{100}$$
 $= \frac{19}{50}$ 


b) does not read comic books?

$$P(A^{c}) = 1 - P(A)$$
  
=  $1 - \frac{38}{100}$   
=  $\frac{62}{100} = \frac{31}{50}$ 


## Intersection of Events

Notation: 
$$P(A) = \frac{n(A) \leftarrow \# \text{ of set } A}{n(U) \leftarrow \text{Total } \# \text{ in space } U}$$

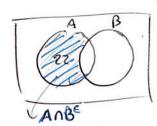
Of the 100 students, 30 students play soccer. Of those, 16 do both, read comic books and play soccer (let B represent the event of "playing soccer"). How many students just play soccer? How many students just read comic books? Draw a Venn diagram to represent this situation.



What is the probability that a randomly selected student engages in both activities, reads comic books and plays soccer? Draw a Venn diagram.

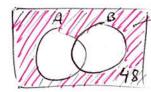


$$n(A \cap B)$$


$$n(U) = 100$$

$$o_{o}^{\circ} P(A \cap B) = \frac{n(A \cap B)}{n(U)} = \frac{16}{100}$$

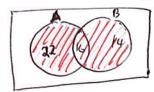
-> 48 students don't play socier or read commit books


$$=\frac{n(AnB)}{n(U)}=\frac{16}{100}$$

What is the probability that a randomly selected student does not play soccer but does read comic books? Draw a Venn diagram.

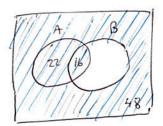


$$n(A \cap B^{\epsilon}) = 22$$
 $n(U) = 100$ 
 $P(A \cap B^{\epsilon}) = \frac{n(A \cap B^{\epsilon})}{n(U)} = \frac{22}{100}$ 
 $= \frac{11}{100}$ 


What is the probability that a randomly selected student does not engage in both activities, does not read comic books or play soccer? Draw a Venn diagram.



$$\frac{1}{n(A^c \cap B^c)} = \frac{48}{n(U)} = \frac{12}{25}$$


## **Union of Events**

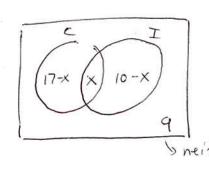
What is the probability that a randomly selected student either reads comic books or plays soccer (does "or" include the possibility of both?). Draw a Venn diagram.



$$n(A \cup B) = 22 + 16 + 14 = 52$$
  
 $n(U) = 100$   
 $o P(A \cup B) = \frac{n(A \cup B)}{n(U)} = \frac{52}{100} = \frac{13}{25}$ 

AUBC represents Students that eiter do como books or Draw a Venn diagram and find P(AUBC).




$$P(AUB^c) = 22+16+48=86$$

$$P(AUB^c) = \frac{n(AUB^c)}{n(U)} = \frac{86}{100} = \frac{43}{50}$$

## Now you try it!

In a group of 30 students, 17 play computer games, 10 play instruments and 9 play neither. Draw a Venn diagram to show this information. Use your diagram to find the probability that:

- a) a student chosen at random from the group plays instruments,
- b) a student plays both computer games and instruments,
- c) a student plays instruments but not computer games.

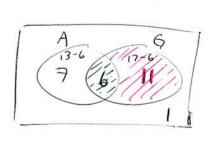


Let 
$$C = play computer games$$
.

Let  $C = play computer games$ 
 $T = play in struments$ 

We don't know how many do both!

So, let  $X = n(C \cap I)$ 
 $X = play in struments$ 
 $X = play in struments$ 


There are 25 girls in a PE group. 13 have taken aerobics before and 17 haven taken gymnastics. One girl has done neither before. How many have done both activities?

$$3 - x + x + 17 - x + 1 = 25$$

$$3 - x = 25$$
The probability that:

One girl is chosen at random. Find the probability that:

- a) she has taken both activities,
- b) she has taken gymnastics but not aerobics.

